forked from gazebosim/gz-math
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kmeans.cc
174 lines (153 loc) · 4.69 KB
/
Kmeans.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
* Copyright (C) 2014 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <ignition/math/Kmeans.hh>
#include <iostream>
#include <ignition/math/Rand.hh>
#include "KmeansPrivate.hh"
using namespace ignition;
using namespace math;
//////////////////////////////////////////////////
Kmeans::Kmeans(const std::vector<Vector3d> &_obs)
: dataPtr(new KmeansPrivate)
{
this->Observations(_obs);
}
//////////////////////////////////////////////////
Kmeans::~Kmeans()
{
delete this->dataPtr;
this->dataPtr = NULL;
}
//////////////////////////////////////////////////
std::vector<Vector3d> Kmeans::Observations() const
{
return this->dataPtr->obs;
}
//////////////////////////////////////////////////
bool Kmeans::Observations(const std::vector<Vector3d> &_obs)
{
if (_obs.empty())
{
std::cerr << "Kmeans::SetObservations() error: Observations vector is empty"
<< std::endl;
return false;
}
this->dataPtr->obs = _obs;
return true;
}
//////////////////////////////////////////////////
bool Kmeans::AppendObservations(const std::vector<Vector3d> &_obs)
{
if (_obs.empty())
{
std::cerr << "Kmeans::AppendObservations() error: input vector is empty"
<< std::endl;
return false;
}
this->dataPtr->obs.insert(this->dataPtr->obs.end(), _obs.begin(), _obs.end());
return true;
}
//////////////////////////////////////////////////
bool Kmeans::Cluster(int _k,
std::vector<Vector3d> &_centroids,
std::vector<unsigned int> &_labels)
{
// Sanity check.
if (this->dataPtr->obs.empty())
{
std::cerr << "Kmeans error: The set of observations is empty" << std::endl;
return false;
}
if (_k <= 0)
{
std::cerr << "Kmeans error: The number of clusters has to"
<< " be positive but its value is [" << _k << "]"
<< std::endl;
return false;
}
if (_k > static_cast<int>(this->dataPtr->obs.size()))
{
std::cerr << "Kmeans error: The number of clusters [" << _k << "] has to be"
<< " lower or equal to the number of observations ["
<< this->dataPtr->obs.size() << "]" << std::endl;
return false;
}
size_t changed = 0;
// Initialize the size of the vectors;
this->dataPtr->centroids.clear();
this->dataPtr->labels.resize(this->dataPtr->obs.size());
this->dataPtr->sums.resize(_k);
this->dataPtr->counters.resize(_k);
for (auto i = 0; i < _k; ++i)
{
// Choose a random observation and make sure it has not been chosen before.
// Note: This is not really random but it's faster than choosing a random
// one and verifying that it was not taken before.
this->dataPtr->centroids.push_back(this->dataPtr->obs[i]);
}
// Initialize labels.
for (auto i = 0u; i < this->dataPtr->obs.size(); ++i)
this->dataPtr->labels[i] = 0;
do
{
// Reset sums and counters.
for (auto i = 0u; i < this->dataPtr->centroids.size(); ++i)
{
this->dataPtr->sums[i] = Vector3d::Zero;
this->dataPtr->counters[i] = 0;
}
changed = 0;
for (auto i = 0u; i < this->dataPtr->obs.size(); ++i)
{
// Update the labels containing the closest centroid for each point.
auto label = this->ClosestCentroid(this->dataPtr->obs[i]);
if (this->dataPtr->labels[i] != label)
{
this->dataPtr->labels[i] = label;
changed++;
}
this->dataPtr->sums[label] += this->dataPtr->obs[i];
this->dataPtr->counters[label]++;
}
// Update the centroids.
for (auto i = 0u; i < this->dataPtr->centroids.size(); ++i)
{
this->dataPtr->centroids[i] =
this->dataPtr->sums[i] / this->dataPtr->counters[i];
}
}
while (changed > (this->dataPtr->obs.size() >> 10)); // NOLINT
_centroids = this->dataPtr->centroids;
_labels = this->dataPtr->labels;
return true;
}
//////////////////////////////////////////////////
unsigned int Kmeans::ClosestCentroid(const Vector3d &_p) const
{
double min = HUGE_VAL;
unsigned int minIdx = 0;
for (auto i = 0u; i < this->dataPtr->centroids.size(); ++i)
{
double d = _p.Distance(this->dataPtr->centroids[i]);
if (d < min)
{
min = d;
minIdx = i;
}
}
return minIdx;
}