forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbranch_and_bound.h
693 lines (612 loc) · 27.3 KB
/
branch_and_bound.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#pragma once
#include <list>
#include <map>
#include <memory>
#include <unordered_map>
#include <utility>
#include "drake/solvers/mathematical_program.h"
#include "drake/solvers/mathematical_program_result.h"
namespace drake {
namespace solvers {
/**
* A node in the branch-and-bound (bnb) tree.
* The whole branch-and-bound tree solves the mixed-integer problem
* min f(x) (1)
* s.t g(x) ≤ 0
* z ∈ {0, 1}
* where the binary variables z are a subset of the decision variables x.
* In this node, we will fix some binary variables to either 0 and 1, and relax
* the rest of the binary variables to continuous variables between 0 and 1.
* Namely we will solve the following problem with all variables being
* continuous
* min f(x) (2)
* s.t g(x) ≤ 0
* z_fixed = b_fixed
* 0 ≤ z_relaxed ≤ 1
* where z_fixed, z_relaxed is a partition of the original binary variables z.
* z_fixed is the fixed binary variables, z_relaxed is the relaxed binary
* variables. b_fixed is a vector containing the assigned values of the fixed
* binary variables z_fixed, b_fixed only contains value either 0 or 1.
*
* Each node is created from its parent node, by fixing one binary variable to
* either 0 or 1.
*/
class MixedIntegerBranchAndBoundNode {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(MixedIntegerBranchAndBoundNode)
/** Construct the root node from an optimization program.
* For the mixed-integer optimization program
* min f(x) (1)
* s.t g(x) ≤ 0
* z ∈ {0, 1}
* we will construct a root node for this mixed-integer program. In the root
* node, it enforces all the costs and constraints in the original program,
* except the binary constraint z ∈ {0, 1}. Instead, it enforces the relaxed
* constraint to 0 ≤ z ≤ 1. So the root node contains the program
* min f(x) (2)
* s.t g(x) ≤ 0
* 0 ≤ z ≤ 1
* This optimization program is solved during the node construction.
* @param prog The mixed-integer optimization program (1) in the
* documentation above.
* @param solver_id The ID of the solver for the optimization program.
* @retval (node, map_old_vars_to_new_vars) node is the root node of the tree,
* that contains the optimization program (2) in the documentation above. This
* root node has no parent. We also need to recreate new decision variables in
* the root node, from the original optimization program (1), since the binary
* variables will be converted to continuous variables in (2). We thus return
* the map from the old variables to the new variables.
* @pre prog should contain binary variables.
* @pre solver_id can be either Gurobi or Scs.
* @throws std::runtime_error if the preconditions are not met.
*/
static std::pair<
std::unique_ptr<MixedIntegerBranchAndBoundNode>,
std::unordered_map<symbolic::Variable::Id, symbolic::Variable>>
ConstructRootNode(const MathematicalProgram& prog, const SolverId& solver_id);
/**
* Branches on @p binary_variable, and creates two child nodes. In the left
* child node, the binary variable is fixed to 0. In the right node, the
* binary variable is fixed to 1. Solves the optimization program in each
* child node.
* @param binary_variable This binary variable is fixed to either 0 or 1 in
* the child node.
* @pre binary_variable is in remaining_binary_variables_;
* @throws std::runtime_error if the preconditions are not met.
*/
void Branch(const symbolic::Variable& binary_variable);
/** Returns true if a node is the root.
* A root node has no parent.
*/
bool IsRoot() const;
/** Determine if a node is a leaf or not.
* A leaf node has no child nodes.
*/
bool IsLeaf() const { return !left_child_ && !right_child_; }
/**
* Getter for the mathematical program.
*/
const MathematicalProgram* prog() const { return prog_.get(); }
/**
* Getter for the mathematical program result.
*/
const MathematicalProgramResult* prog_result() const {
return prog_result_.get();
}
/** Getter for the left child. */
const MixedIntegerBranchAndBoundNode* left_child() const {
return left_child_.get();
}
/** Getter for the mutable left child. */
MixedIntegerBranchAndBoundNode* mutable_left_child() {
return left_child_.get();
}
/** Getter for the right child. */
const MixedIntegerBranchAndBoundNode* right_child() const {
return right_child_.get();
}
/** Getter for the mutable right child. */
MixedIntegerBranchAndBoundNode* mutable_right_child() {
return right_child_.get();
}
/** Getter for the parent node. */
const MixedIntegerBranchAndBoundNode* parent() const { return parent_; }
/** Getter for the mutable parent node. */
MixedIntegerBranchAndBoundNode* mutable_parent() { return parent_; }
/**
* Getter for the binary variable, whose value was not fixed in
* the parent node, but is fixed to either 0 or 1 in this node.
*/
const symbolic::Variable& fixed_binary_variable() const {
return fixed_binary_variable_;
}
/**
* Getter for the value of the binary variable, which was not fixed in the
* parent node, but is fixed to either 0 or 1 in this node.
*/
int fixed_binary_value() const { return fixed_binary_value_; }
/**
* Getter for the remaining binary variables in this node.
*/
const std::list<symbolic::Variable>& remaining_binary_variables() const {
return remaining_binary_variables_;
}
/** Getter for the solution result when solving the optimization program. */
SolutionResult solution_result() const { return solution_result_; }
/**
* Getter for optimal_solution_is_integral.
* @pre The optimization problem is solved successfully.
* @throws std::runtime_error if the precondition is not satisfied.
*/
bool optimal_solution_is_integral() const;
/** Getter for solver id. */
const SolverId& solver_id() const { return solver_id_; }
private:
/**
* If the solution to a binary variable is either less than integral_tol or
* larger than 1 - integral_tol, then we regard the solution to be binary.
* This method set this tolerance.
*/
void set_integral_tolerance(double integral_tol) {
integral_tol_ = integral_tol;
}
private:
// Constructs an empty node. Clone the input mathematical program to this
// node. The child and the parent nodes are all nullptr.
// @param prog The optimization program whose binary variable constraints are
// all relaxed to 0 ≤ z ≤ 1.
// @param binary_variables The list of binary variables in the mixed-integer
// problem.
MixedIntegerBranchAndBoundNode(
const MathematicalProgram& prog,
const std::list<symbolic::Variable>& binary_variables,
const SolverId& solver_id);
// Fix a binary variable to a binary value. Add a constraint z = 0 or z = 1 to
// the optimization program. Remove this binary variable from the
// remaining_binary_variables_ list; set the binary_var_ and
// binary_var_value_.
void FixBinaryVariable(const symbolic::Variable& binary_variable,
bool binary_value);
// Check if the optimal solution to the program in this node satisfies all
// integral constraints.
// Only call this function AFTER the program is solved.
void CheckOptimalSolutionIsIntegral();
enum class OptimalSolutionIsIntegral {
kTrue, ///< The program in this node has been solved, and the solution to
/// all binary variables satisfies the integral constraints.
kFalse, ///< The program in this node has been solved, and the solution to
/// some binary variables does not satisfy the integral constraints.
kUnknown, ///< Either the program in this node has not been solved, or we
/// have not checked if the solution satisfy the integral
/// constraints yet.
};
// Stores the optimization program in this node.
std::unique_ptr<MathematicalProgram> prog_;
std::unique_ptr<MathematicalProgramResult> prog_result_;
std::unique_ptr<MixedIntegerBranchAndBoundNode> left_child_;
std::unique_ptr<MixedIntegerBranchAndBoundNode> right_child_;
MixedIntegerBranchAndBoundNode* parent_;
// The newly fixed binary variable z, in the decision variables x.
// The value of z was not fixed in the parent node, but is fixed in this
// node.
symbolic::Variable fixed_binary_variable_;
// The value of the newly fixed binary variable z, in the decision variables
// x. The value of z was not fixed in the parent node, but is fixed in this
// node.
int fixed_binary_value_;
// The variables that were binary in the original mixed-integer optimization
// problem, but whose value has not been fixed to either 0 or 1 yet.
std::list<symbolic::Variable> remaining_binary_variables_;
// The solution result of the optimization program.
SolutionResult solution_result_;
// Whether the optimal solution in this node satisfies all integral
// constraints.
OptimalSolutionIsIntegral optimal_solution_is_integral_;
SolverId solver_id_;
// If the solution to a binary variable is either less than integral_tol or
// larger than 1 - integral_tol, then we regard the solution to be binary.
double integral_tol_{1E-5};
};
/**
* Given a mixed-integer optimization problem (MIP) (or more accurately, mixed
* binary problem), solve this problem through branch-and-bound process. We will
* first replace all the binary variables with continuous variables, and relax
* the integral constraint on the binary variables z ∈ {0, 1} with continuous
* constraints 0 ≤ z ≤ 1. In the subsequent steps, at each node of the tree,
* we will fix some binary variables to either 0 or 1, and solve the rest of
* the variables.
* Notice that we will create a new set of variables in the branch-and-bound
* process, since we need to replace the binary variables with continuous
* variables.
*/
class MixedIntegerBranchAndBound {
public:
/**
* Different methods to pick a branching variable.
*/
enum class VariableSelectionMethod {
kUserDefined, ///< User defined.
kLeastAmbivalent, ///< Pick the variable whose value is closest to 0 or 1.
kMostAmbivalent, ///< Pick the variable whose value is closest to 0.5
};
/**
* Different methods to pick a branching node.
*/
enum class NodeSelectionMethod {
kUserDefined, ///< User defined.
kDepthFirst, ///< Pick the node with the most binary variables fixed.
kMinLowerBound, ///< Pick the node with the smallest optimal cost.
};
/**
* The function signature for the user defined method to pick a branching node
* or a branching variable.
*/
using NodeSelectFun = std::function<MixedIntegerBranchAndBoundNode*(
const MixedIntegerBranchAndBound&)>;
using VariableSelectFun = std::function<const symbolic::Variable*(
const MixedIntegerBranchAndBoundNode&)>;
/** The function signature for user defined node callback function. */
using NodeCallbackFun = std::function<void(
const MixedIntegerBranchAndBoundNode&, MixedIntegerBranchAndBound* bnb)>;
/**
* Construct a branch-and-bound tree from a mixed-integer optimization
* program.
* @param prog A mixed-integer optimization program.
* @param solver_id The ID of the solver for the optimization.
*/
explicit MixedIntegerBranchAndBound(const MathematicalProgram& prog,
const SolverId& solver_id);
/**
* Solve the mixed-integer problem (MIP) through a branch and bound process.
* @retval solution_result If solution_result=SolutionResult::kSolutionFound,
* then the best solutions are stored inside solutions(). The user
* can access the value of each variable(s) through GetSolution(...).
* If solution_result=SolutionResult::kInfeasibleConstraints, then the
* mixed-integer problem is primal infeasible.
* If solution_result=SolutionResult::kUnbounded, then the mixed-integer
* problem is primal unbounded.
*/
SolutionResult Solve();
/** Get the optimal cost. */
double GetOptimalCost() const;
/**
* Get the n'th sub-optimal cost.
* The costs are sorted in the ascending order. The sub-optimal costs do not
* include the optimal cost.
* @param nth_suboptimal_cost The n'th sub-optimal cost.
* @pre `nth_suboptimal_cost` is between 0 and solutions().size() - 1.
* @throws std::runtime_error if the precondition is not satisfied.
*/
double GetSubOptimalCost(int nth_suboptimal_cost) const;
/**
* Get the n'th best integral solution for a variable.
* The best solutions are sorted in the ascending order based on their costs.
* Each solution is found in a separate node in the branch-and-bound tree, so
* the values of the binary variables are different in each solution.
* @param mip_var A variable in the original MIP.
* @param nth_best_solution. The index of the best integral solution.
* @pre `mip_var` is a variable in the original MIP.
* @pre `nth_best_solution` is between 0 and solutions().size().
* @throws std::runtime_error if the preconditions are not satisfied.
*/
double GetSolution(const symbolic::Variable& mip_var,
int nth_best_solution = 0) const;
/**
* Get the n'th best integral solution for some variables.
* The best solutions are sorted in the ascending order based on their costs.
* Each solution is found in a separate node in the branch-and-bound tree, so
* @param mip_vars Variables in the original MIP.
* @param nth_best_solution. The index of the best integral solution.
* @pre `mip_vars` are variables in the original MIP.
* @pre `nth_best_solution` is between 0 and solutions().size().
* @throws std::runtime_error if the preconditions are not satisfied.
*/
template <typename Derived>
typename std::enable_if<
std::is_same<typename Derived::Scalar, symbolic::Variable>::value,
Eigen::Matrix<double, Derived::RowsAtCompileTime,
Derived::ColsAtCompileTime>>::type
GetSolution(const Eigen::MatrixBase<Derived>& mip_vars,
int nth_best_solution = 0) const {
Eigen::Matrix<double, Derived::RowsAtCompileTime,
Derived::ColsAtCompileTime>
value(mip_vars.rows(), mip_vars.cols());
for (int i = 0; i < mip_vars.rows(); ++i) {
for (int j = 0; j < mip_vars.cols(); ++j) {
value(i, j) = GetSolution(mip_vars(i, j), nth_best_solution);
}
}
return value;
}
/**
* Given an old variable in the original mixed-integer program, return the
* corresponding new variable in the branch-and-bound process.
* @param old_variable A variable in the original mixed-integer program.
* @retval new_variable The corresponding variable in the branch-and-bound
* procedure.
* @pre old_variable is a variable in the mixed-integer program, passed in the
* constructor of this MixedIntegerBranchAndBound.
* @throws std::runtime_error if the pre-condition fails.
*/
const symbolic::Variable& GetNewVariable(
const symbolic::Variable& old_variable) const;
/**
* Given a matrix of old variables in the original mixed-integer program,
* return a matrix of corresponding new variables in the branch-and-bound
* process.
* @param old_variables Variables in the original mixed-integer program.
* @retval new_variables The corresponding variables in the branch-and-bound
* procedure.
*/
template <typename Derived>
typename std::enable_if<
is_eigen_scalar_same<Derived, symbolic::Variable>::value,
MatrixDecisionVariable<Derived::RowsAtCompileTime,
Derived::ColsAtCompileTime>>::type
GetNewVariables(const Eigen::MatrixBase<Derived>& old_variables) const {
Eigen::MatrixBase<Derived> new_variables;
new_variables.resize(old_variables.rows(), old_variables.cols());
for (int i = 0; i < old_variables.rows(); ++i) {
for (int j = 0; j < old_variables.cols(); ++j) {
new_variables(i, j) = GetNewVariable(old_variables(i, j));
}
}
return new_variables;
}
/**
* The user can choose the method to pick a node for branching. We provide
* options such as "depth first" or "min lower bound".
* @param node_selection_method The option to pick a node. If the option is
* NodeSelectionMethod::kUserDefined, then the user should also provide the
* method to pick a node through SetUserDefinedNodeSelectionFunction.
*/
void SetNodeSelectionMethod(NodeSelectionMethod node_selection_method) {
node_selection_method_ = node_selection_method;
}
/**
* Set the user-defined method to pick the branching node. This method is
* used if the user calls
* SetNodeSelectionMethod(NodeSelectionMethod::kUserDefined).
*
* For example, if the user has defined a function LeftMostNode that would
* return the left-most unfathomed node in the tree, then the user could do
* \code{.cc}
* MixedIntegerBranchAndBoundNode* LeftMostNodeInSubTree(
* const MixedIntegerBranchAndBound& branch_and_bound,
* const MixedIntegerBranchAndBoundNode& subtree_root) {
* // Starting from the subtree root, find the left most leaf node that is
* not fathomed.
* blah
* }
*
* MixedIntegerBranchAndBound bnb(...);
* bnb.SetNodeSelectionMethod(MixedIntegerBranchAndBound::NodeSelectionMethod::kUserDefined);
* // Use a lambda function as the NodeSelectionFun
* bnb->SetUserDefinedNodeSelectionFunction([](
* const MixedIntegerBranchAndBound& branch_and_bound) {
* return LeftMostNodeInSubTree(branch_and_bound,
* *(branch_and_bound.root()));
* \endcode
* A more detailed example can be found in
* solvers/test/branch_and_bound_test.cc
* in TestSetUserDefinedNodeSelectionFunction.
* @note The user defined function should pick an un-fathomed leaf node for
* branching.
* @throws std::_runtime error if the node is not a leaf node, or it is
* fathomed.
*/
void SetUserDefinedNodeSelectionFunction(NodeSelectFun fun) {
node_selection_userfun_ = fun;
}
/**
* The user can choose the method to pick a variable for branching in each
* node. We provide options such as "most ambivalent" or "least ambivalent".
* @param variable_selection_method The option to pick a variable. If the
* option is VariableSelectionMethod::kUserDefined, then the user should also
* provide the method to pick a variable through
* SetUserDefinedVariableSelectionFunction(...).
*/
void SetVariableSelectionMethod(
VariableSelectionMethod variable_selection_method) {
variable_selection_method_ = variable_selection_method;
}
/**
* Set the user-defined method to pick the branching variable. This method is
* used if the user calls
* SetVariableSelectionMethod(VariableSelectionMethod::kUserDefined).
*
* For example, if the user has defined a function FirstVariable, that would
* return the first un-fixed binary variable in this branch as
* \code{.cc}
* SymbolicVariable* FirstVariable(const MixedIntegerBranchAndBoundNode& node)
* {
* return node.remaining_binary_variables().begin();
* }
* \endcode
* The user can then set the branch-and-bound to use this function to select
* the branching variable as
* \code{.cc}
* MixedIntegerBranchAndBound bnb(...);
* bnb.SetVariableSelectionMethod(MixedIntegerBranchAndBound:VariableSelectionMethod::kUserDefined);
* // Set VariableSelectFun by using a function pointer.
* bnb.SetUserDefinedVariableSelectionFunction(FirstVariable);
* \endcode
*/
void SetUserDefinedVariableSelectionFunction(VariableSelectFun fun) {
variable_selection_userfun_ = fun;
}
/** Set the flag to true if the user wants to search an integral solution
* in each node, after the optimization problem in that node is solved.
* The program can search for an integral solution based on the solution to
* the optimization program in the node, by rounding the binary variables
* to the nearest integer value, and solve for the continuous variables.
* If a solution is obtained in this new program, then this solution is
* an integral solution to the mixed-integer program.
*/
void SetSearchIntegralSolutionByRounding(bool flag) {
search_integral_solution_by_rounding_ = flag;
}
/**
* The user can set a defined callback function in each node. This function is
* called after the optimization is solved in each node.
*/
void SetUserDefinedNodeCallbackFunction(NodeCallbackFun fun) {
node_callback_userfun_ = fun;
}
/**
* If a leaf node is fathomed, then there is no need to branch on this node
* any more. A leaf node is fathomed is any of the following conditions are
* satisfied:
*
* 1. The optimization problem in the node is infeasible.
* 2. The optimal cost of the node is larger than the best upper bound.
* 3. The optimal solution to the node satisfies all the integral constraints.
* 4. All binary variables are fixed to either 0 or 1 in this node.
*
* @param leaf_node A leaf node to check if it is fathomed.
* @pre The node should be a leaf node.
* @throws std::runtime_error if the precondition is not satisfied.
*/
bool IsLeafNodeFathomed(
const MixedIntegerBranchAndBoundNode& leaf_node) const;
/**
* Getter for the root node. Note that this is aliased for the lifetime of
* this object.
*/
const MixedIntegerBranchAndBoundNode* root() const { return root_.get(); }
/** Getter for the best upper bound. */
double best_upper_bound() const { return best_upper_bound_; }
/** Getter for the best lower bound. */
double best_lower_bound() const { return best_lower_bound_; }
/**
* Getter for the solutions.
* Returns a list of solutions, together with the costs evaluated at the
* solutions. The solutions are sorted in the ascending order based on the
* cost.
*/
const std::multimap<double, Eigen::VectorXd>& solutions() const {
return solutions_;
}
/** Setter for the absolute gap tolerance.
* The branch-and-bound will terminate if its difference between its best
* upper bound and best lower bound is below this gap tolerance.
*/
void set_absolute_gap_tol(double tol) { absolute_gap_tol_ = tol; }
/** Getter for the absolute gap tolerance. */
double absolute_gap_tol() const { return absolute_gap_tol_; }
/** Setter for the relative gap tolerance.
* The branch-and-bound will terminate if
* (best_upper_bound() - best_lower_bound()) / abs(best_lower_bound())
* is smaller than this tolerance.
*/
void set_relative_gap_tol(double tol) { relative_gap_tol_ = tol; }
/** Geeter for the relative gap tolerance. */
double relative_gap_tol() const { return relative_gap_tol_; }
private:
// Forward declaration the tester class.
friend class MixedIntegerBranchAndBoundTester;
/**
* Pick one node to branch.
*/
MixedIntegerBranchAndBoundNode* PickBranchingNode() const;
/**
* Pick the node with the minimal lower bound.
*/
MixedIntegerBranchAndBoundNode* PickMinLowerBoundNode() const;
/**
* Pick the node with the most binary variables fixed.
*/
MixedIntegerBranchAndBoundNode* PickDepthFirstNode() const;
/**
* Pick the branching variable in a node.
*/
const symbolic::Variable* PickBranchingVariable(
const MixedIntegerBranchAndBoundNode& node) const;
/**
* Branch on a node, solves the optimization, and update the best lower and
* upper bounds.
* @param node. The node to be branched.
* @param branching_variable. Branch on this variable in the node.
*/
void BranchAndUpdate(MixedIntegerBranchAndBoundNode* node,
const symbolic::Variable& branching_variable);
/**
* Update the solutions (solutions_) and the best upper bound, with an
* integral solution and its cost.
* @param solution. The integral solution.
* @param cost. The cost evaluated at this integral solution.
*/
void UpdateIntegralSolution(const Eigen::Ref<const Eigen::VectorXd>& solution,
double cost);
/**
* The branch-and-bound has converged if the gap between the best upper bound
* and the best lower bound is less than the tolerance.
*/
bool HasConverged() const;
/** Call the callback function in each node. */
void NodeCallback(const MixedIntegerBranchAndBoundNode& node);
/**
* Search for an integral solution satisfying all the constraints in this
* node, together with the integral constraints in the original mixed-integer
* program. It will construct a new optimization program, same as the one
* in this node, but the remaining binary variables are all rounded to
* the binary value that is closest to the solution of the optimization
* program in this node.
* @note this function is only called if the following conditions are
* satisfied:
* 1. The optimization problem in this node is feasible.
* 2. The optimal solution to the problem in this node is not integral.
* 3. The user called SetSearchIntegralSolutionByRounding(true);
*
* @note This method will change the data field such as solutions_ and/or
* best_upper_bound_, if an integral solution is found.
*/
void SearchIntegralSolutionByRounding(
const MixedIntegerBranchAndBoundNode& node);
// The root node of the tree.
std::unique_ptr<MixedIntegerBranchAndBoundNode> root_;
// We re-created the decision variables in the optimization program in the
// branch-and-bound. All nodes uses the same new set of decision variables,
// which is different from the variables in the original mixed-integer program
// (the one passed in the constructor of MixedIntegerBranchAndBound). This map
// is used to find the corresponding new variable from the old variable in the
// mixed-integer program.
std::unordered_map<symbolic::Variable::Id, symbolic::Variable>
map_old_vars_to_new_vars_;
// The best upper bound of the mixed-integer optimization optimal cost. An
// upper bound is obtained by evaluating the cost at a solution satisfying all
// the constraints (including the integral constraints) in the mixed-integer
// problem.
double best_upper_bound_;
// The best lower bound of the mixed-integer optimization optimal cost. This
// best lower bound is obtained by taking the minimal of the optimal cost in
// each leaf node.
double best_lower_bound_;
// Solutions found so far. Each entry in this list contains both the
// cost and the decision variable values. This list is sorted in the
// ascending order based on the cost, and it contains at most
// max_num_solutions_ elements.
std::multimap<double, Eigen::VectorXd> solutions_;
int max_num_solutions_{10};
// The branch and bound process will terminate when the best upper bound is
// sufficiently close to the best lower bound, that is, when either of the
// following conditions is satisfied:
// 1. (best_upper_bound_ - best_lower_bound_) / abs(best_lower_bound_) <
// relative_gap_tol
// 2. best_upper_bound_ - best_lower_bound_ < absolute_gap_tol_;
double absolute_gap_tol_ = 1E-2;
double relative_gap_tol_ = 1E-2;
VariableSelectionMethod variable_selection_method_ =
VariableSelectionMethod::kMostAmbivalent;
NodeSelectionMethod node_selection_method_ =
NodeSelectionMethod::kMinLowerBound;
bool search_integral_solution_by_rounding_ = false;
// The user defined function to pick a branching variable. Default is null.
VariableSelectFun variable_selection_userfun_ = nullptr;
// The user defined function to pick a branching node. Default is null.
NodeSelectFun node_selection_userfun_ = nullptr;
// The user defined callback function in each node. Default is null.
NodeCallbackFun node_callback_userfun_ = nullptr;
};
} // namespace solvers
} // namespace drake