forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adv_dplyr.Rmd
686 lines (434 loc) · 13.1 KB
/
adv_dplyr.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# tidyverse进阶 {#advR}
让我们继续聊聊,相见恨晚的tidyverse
```{r message = FALSE, warning = FALSE}
library(tidyverse)
```
## scoped 函数
在第 \@ref(dplyr) 章介绍了dplyr的一些函数(`mutate()`, `select()`等等),事实上,这些函数加上后缀
`_all, _at, _if`,形成三组变体函数,可以方便对**特定的子集**进行操作。比如
- 对数据框所有列操作,可以用`_all`
- 对数据框指定的几列操作,可以用`_at`
- 对数据框符合条件的几列进行操作,可以用`_if`
| Operate | _all | _at | _if |
|-----------|---------------|--------------|--------------|
| `select()` | `select_all()` | `select_at()` | `select_if()` |
| `mutate()` | `mutate_all()` | `mutate_at()` | `mutate_if()` |
| `rename()` | `rename_all()` | `rename_at()` | `rename_if()` |
| `arrange()` | `arrange_all()` | `arrange_at()` | `arrange_if()` |
| `filter()` | `filter_all()` | `filter_at()` | `filter_if()` |
| `distinct()` | `distinct_all()` | `distinct_at()` | `distinct_if()` |
| `group_by()` | `group_by_all()` | `group_by_at()` | `group_by_if()` |
| `summarise()` | `summarise_all()` | `summarise_at()` | `summarise_if()` |
| `map()` | `map_all()` | `map_at()` | `map_if()` |
| `modify()` | `modify_all()` | `modify_at()` | `modify_if()` |
下面选取其中几个函数加以说明
### mutate_if
```{r}
df_iris <- iris %>%
head(5)
df_iris
```
```{r}
df_iris %>% mutate_if(is.double, as.integer)
```
可以一次性增加多列
```{r}
df_iris %>% mutate_if(is.numeric, list(scale, log))
```
也可以把函数放在list()中,用 Purrr-style lambda 形式写出
```{r}
df_iris %>% mutate_if(is.numeric, list(~ scale(.), ~ log(.)))
```
### select_if()
```{r}
df <- tibble::tibble(
x = letters[1:3],
y = c(1:3),
z = c(0, 0, 0)
)
df
```
```{r}
df %>% select_if(is.numeric)
```
```{r}
df %>% select_if(~ n_distinct(.) > 2)
```
`select_if` 多个条件的情况
```{r}
df %>% select_if(
list(~ (is.numeric(.) | is.character(.)))
)
```
```{r}
df %>% select_if(
~ (is.numeric(.) | is.character(.))
)
```
```{r}
to_keep <- function(x) is.numeric(x) | is.character(x)
df %>% select_if(to_keep)
```
```{r}
df %>% select_if(
list(~ (is.numeric(.) && sum(.) > 2))
)
```
```{r}
df %>% select_if(
list(~ (is.numeric(.) && mean(.) > 1))
)
```
我们也可以写成函数的形式
```{r}
to_want <- function(x) is.numeric(x) && sum(x) > 3
df %>% select_if(to_want)
```
## summarise_if
```{r, message=FALSE, warning=FALSE}
msleep <- ggplot2::msleep
msleep %>%
dplyr::group_by(vore) %>%
dplyr::summarise_all(~ mean(., na.rm = TRUE))
```
```{r}
msleep <- ggplot2::msleep
msleep %>%
dplyr::group_by(vore) %>%
# summarise_if(is.numeric, ~mean(., na.rm = TRUE))
dplyr::summarise_if(is.numeric, mean, na.rm = TRUE)
```
## filter_if()
事实上,filter已经很强大了,有了scoped函数,就如虎添翼了
```{r}
msleep <- ggplot2::msleep
msleep %>%
dplyr::select(name, sleep_total) %>%
dplyr::filter(sleep_total > 18)
```
```{r}
msleep %>%
dplyr::select(name, sleep_total) %>%
dplyr::filter(between(sleep_total, 16, 18))
```
```{r}
msleep %>%
dplyr::select(name, sleep_total) %>%
# filter(near(sleep_total, 17, tol=sd(sleep_total)))
dplyr::filter(near(sleep_total, mean(sleep_total), tol = 0.5 * sd(sleep_total)))
```
mtcars是 R内置数据集,记录了32种不同品牌的轿车的的11个属性
```{r}
mtcars
```
`filter_if()`配合`all_vars(), any_vars()`函数,可以完成很酷的工作.
比如,要求一行中所有变量的值都大于150
```{r}
mtcars %>% filter_all(all_vars(. > 150))
```
比如,要求一行中至少有一个变量的值都大于150
```{r}
# Or the union:
mtcars %>% filter_all(any_vars(. > 150))
```
```{r}
# You can vary the selection of columns on which to apply the predicate.
# filter_at() takes a vars() specification:
mtcars %>% filter_at(vars(starts_with("d")), any_vars((. %% 2) == 0))
```
`filter_if(.tbl, .predicate, .vars_predicate)` 相对复杂点,我这里多说几句。
filter_if() 有三个参数:
- .tbl, 数据框
- .predicate, 应用在列上的函数,一般作为列的选择条件
- .vars_predicate, 应用在一行上的函数,通过 `all_vars(), any_vars()`返回值决定是否选取该行。
```{r}
# And filter_if() selects variables with a predicate function:
# filter_if(.tbl, .predicate, .vars_predicate)
# mtcars %>% map_df(~ all(floor(.) == .) )
# mtcars %>% select_if( ~ all(floor(.) == .) )
mtcars %>% filter_if(~ all(floor(.) == .), all_vars(. != 0))
```
所以这里是,先通过`.predicate = ~ all(floor(.) == .)` 选取变量值为整数的列,然后再看选取的这些列的行方向,如果每一行的值`.vars_predicate = all_vars(. != 0)` ,都不为0,就保留下来,否则过滤掉。
简单点说,这段代码的意思,**数值全部为整数的列,不能同时为0**
## group_by
`group_by()` 用的很多,所以要多讲讲
```{r}
mtcars %>% dplyr::group_by(cyl)
```
```{r}
mtcars %>% group_by_at(vars(cyl))
```
```{r}
# Group a data frame by all variables:
mtcars %>% group_by_all()
```
```{r}
# Group by variables selected with a predicate:
iris %>% group_by_if(is.factor)
```
### group_split(), group_map(), group_modify()
```{r}
iris %>%
dplyr::group_by(Species) %>%
dplyr::group_split()
```
简单点写,就是
```{r}
iris %>%
dplyr::group_split(Species)
```
如果使用`group_split()`, 注意分组后,返回的是列表
```{r}
iris %>%
dplyr::group_split(Species)
```
既然是列表,当然想到用前面讲到的`purrr::map()`家族
```{r}
iris %>%
dplyr::group_split(Species) %>%
purrr::map(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))
```
```{r}
iris %>%
dplyr::group_split(Species) %>%
purrr::map_df(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))
```
上面这个代码,数据框分割成list, 处理完后再合并成数据框,难道不觉得折腾么? 为什么直接点?
tidyverse不会让我们失望的,先看看`group_map()`
```{r}
## The result of .f should be a data frame(.f 必须返回数据框)
## `group_map()` return a list of tibble(返回元素均为df的一个列表list(df1,df2,df3))
iris %>%
dplyr::group_by(Species) %>%
dplyr::group_map(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))
```
数据框进来,然后分组,依次处理成一个个数据框,最后以列表形式(a list of tibble)输出。
事实上,`group_map()`是返回list形式,也就是说,可以是返回任何形式,(a list of tibble)是其中特殊形式。 可以看看下面这个
```{r}
iris %>%
dplyr::group_by(Species) %>%
dplyr::group_map(
~ lm(Petal.Length ~ Sepal.Length, data = .x)
)
```
`group_modify()` 才是真正意义上的"数据框进、数据框出"。
```{r}
iris %>%
dplyr::group_by(Species) %>%
dplyr::group_modify(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))
```
为了大家方便查阅和记忆,我总结下表
| 函数 | 说明 | 常用组合 | 返回值 | 要求 |
|----------|-------------|-------------------|------------------|---------|
| map() | 列表进、列表出 | df %>% <br>group_split() %>% <br>map() | list | |
| map_df() | 列表进、数据框出 | df %>% <br>group_split() %>% <br>map_df() | df | |
| group_map() | 数据框进、列表出 | df %>% <br>group_by() %>% <br>group_map() | 返回list(list1, list2, ...) <br> 特例list(df1, df2, ...) | |
| group_modify() | 数据框进、数据框出 | df %>% <br>group_by() %>% <br>group_modify() | 返回grouped tibble | .f返回df |
| | | | | |
| walk | 列表进 | df %>% <br>group_split() %>%<br>walk() | side effects | |
| group_walk() | 数据框进 | df %>% <br>group_by() %>% <br>group_walk() | side effects | |
我常用的批量出图的语句
```{r, eval = FALSE}
nobel_winners %>%
dplyr::group_split(category) %>%
purrr::map(
~ ggplot(data = .x, aes(x = prize_age)) +
geom_density() +
ggtitle(.x$category)
)
```
```{r, eval = FALSE}
nobel_winners %>%
dplyr::group_by(category) %>%
dplyr::group_map(
~ ggplot(data = .x, aes(x = prize_age)) +
geom_density() +
ggtitle(.y)
)
```
```{r, eval = FALSE}
nobel_winners %>%
dplyr::group_by(category) %>%
dplyr::group_walk(
~ ggsave(
paste0(.y, ".png"),
ggplot(data = .x, aes(x = prize_age)) +
geom_density() +
ggtitle(.y),
device = "png",
path = temp
)
) %>%
invisible()
```
### 其他group函数
`group_nest()`, `group_data()`, `group_keys()`, `group_rows()`
## 列名清理
数据框的列名,不要用有空格和中文。
如果拿到的原始数据中列比较多,手动修改麻烦,可以使用`janitor::clean_names()`函数
```{r}
library(readxl)
library(janitor) # install.packages("janitor")
roster_raw <- read_excel(here::here("demo_data", "dirty_data.xlsx"))
glimpse(roster_raw)
```
```{r}
roster <- roster_raw %>%
janitor::clean_names()
glimpse(roster)
```
## 缺失值检查与处理
### purrr & dplyr 技巧
```{r message=FALSE, warning=FALSE}
library(purrr)
airquality %>% purrr::map(~ sum(is.na(.)))
```
```{r}
airquality %>%
purrr::map_df(~ sum(is.na(.)))
```
```{r}
airquality %>%
dplyr::summarise_at(2:3, ~ sum(is.na(.)))
```
### 缺失值替换
```{r message=FALSE, warning=FALSE}
airquality %>%
mutate_all(funs(replace(., is.na(.), 0)))
```
```{r message=FALSE, warning=FALSE}
airquality %>%
mutate_all(replace_na, replace = 0)
```
```{r message=FALSE, warning=FALSE}
airquality %>%
mutate_if(is.numeric, replace_na, replace = 0)
```
```{r}
airquality %>%
mutate_all(as.numeric) %>%
mutate_all(~ coalesce(., 0))
```
```{r message=FALSE, warning=FALSE}
tibble(
y = c(1, 2, NA, NA, 5),
z = c(NA, NA, 3, 4, 5)
) %>%
mutate_all(~ coalesce(., 0))
```
## 标准化
```{r include=FALSE}
df_mtcars <- mtcars %>%
tibble::rownames_to_column(var = "rowname") %>%
dplyr::mutate(
cyl = factor(cyl),
vs = factor(vs),
am = factor(am),
gear = factor(gear),
carb = factor(carb)
) %>%
tibble::as_tibble()
```
```{r}
df_mtcars
```
```{r}
df_mtcars %>% select_if(funs(is.numeric))
```
```{r}
# way 1
df_mtcars %>%
mutate_at(vars(mpg, disp), ~ scale(., center = T, scale = T))
```
```{r}
# way 2
df_mtcars %>%
mutate_at(vars(mpg, disp), funs((. - mean(.)) / sd(.)))
```
```{r}
# way 3
func <- function(x) (x - min(x)) / (max(x) - min(x))
df_mtcars %>%
mutate_at(vars(mpg, disp), ~ func(.))
```
如果所有的列,都是数值型
```{r, error=TRUE}
func <- function(x) (x - min(x)) / (max(x) - min(x))
df_mtcars %>% mutate_all(~ func(.))
```
- 但这里数据中还有其他类型(fct, chr),所以这里 `mutate_all()` 会报错。
- 这种情形,用`mutate_if()`
```{r}
func <- function(x) (x - min(x)) / (max(x) - min(x))
df_mtcars %>% mutate_if(is.numeric, ~ func(.))
```
```{r}
funs <- list(
centered = mean, # Function object
scaled = ~ . - mean(.) / sd(.) # Purrr-style lambda
)
iris %>%
mutate_if(is.numeric, funs)
```
## across函数
数据框中向量de方向,事实上可以看做有两个方向,横着看是row-vector,竖着看是col-vector。
- colwise: `group_by() %>% summarise/mutate + across()`
- rowwise: `rowwise()/nest_by() %>% summarise/mutate + c_across()`
比如
```{r, eval = FALSE}
iris %>%
dplyr::group_by(Species) %>%
dplyr::summarise(
across(starts_with("Sepal"), mean),
Area = mean(Petal.Length * Petal.Width),
across(starts_with("Petal"), min)
)
```
### across函数替代scope函数
强大的`across()`函数,替代以上`scope`函数(_if, _at, 和 _all函数), 同时`slice_max()`, `slice_min()`, `slice_n()` 将替代 `top_n()`函数。
```{r, eval = FALSE}
df %>% mutate_if(is.numeric, mean, na.rm = TRUE)
# ->
df %>% mutate(across(is.numeric, mean, na.rm = TRUE))
df %>% mutate_at(vars(x, starts_with("y")), mean, na.rm = TRUE)
# ->
df %>% mutate(across(c(x, starts_with("y")), mean, na.rm = TRUE))
df %>% mutate_all(mean, na.rm = TRUE)
# ->
df %>% mutate(across(everything(), mean, na.rm = TRUE))
```
### 更方便的colwise操作
```{r, eval = FALSE}
# multiple
df <- tibble(x = 1:3, y = 3:5, z = 5:7)
mult <- list(x = 1, y = 10, z = 100)
df %>% mutate(across(all_of(names(mult)), ~ .x * mult[[cur_column()]]))
# weights
df <- tibble(x = 1:3, y = 3:5, z = 5:7)
df
weights <- list(x = 0.2, y = 0.3, z = 0.5)
df %>% dplyr::mutate(
across(all_of(names(weights)),
list(wt = ~ .x * weights[[cur_column()]]),
.names = "{col}.{fn}"
)
)
# cutoffs
df <- tibble(x = 1:3, y = 3:5, z = 5:7)
df
cutoffs <- list(x = 2, y = 3, z = 7)
df %>% dplyr::mutate(
across(all_of(names(cutoffs)), ~ if_else(.x > cutoffs[[cur_column()]], 1, 0))
)
```
## 参考资料
- https://dplyr.tidyverse.org/dev/articles/rowwise.html
- https://dplyr.tidyverse.org/dev/articles/colwise.html
```{r, echo = F}
# remove the objects
# rm(list=ls())
rm(df, df_iris, df_mtcars, func, funs, msleep, roster, roster_raw, to_keep, to_want)
```
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```