forked from teticio/Deej-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile
87 lines (72 loc) · 4.96 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
DATA_DIR ?= data
DEEJAI_MODEL_DIR ?= ../deej-ai.online-dev/model
LIMIT_PLAYLISTS ?= 1000000
LIMIT_USERS ?= 1000000
MAX_WORKERS ?= 32
MIN_COUNT ?= 10
MODELS_DIR ?= models
PREVIEWS_DIR ?= previews
PROXY ?= proxy
SPECTROGRAMS_DIR ?= spectrograms
.PHONY: help
help: ## Show help message
@awk 'BEGIN {FS = ":.*##"; printf "\nUsage:\n \033[36m\033[0m\n"} /^[$$()% a-zA-Z_-]+:.*?##/ { printf " \033[36m%-15s\033[0m %s\n", $$1, $$2 } /^##@/ { printf "\n\033[1m%s\033[0m\n", substr($$0, 5) } ' $(MAKEFILE_LIST)
.PHONY: setup
setup: ## Setup environment for training
@pip install -r train/requirements.txt
.PHONY: users
users: $(DATA_DIR)/users.csv ## Scrape user IDs from Spotify
$(DATA_DIR)/users.csv:
@mkdir -p $(DATA_DIR)
python train/get_users.py --cookie=$(COOKIE) --user=$(USER) --limit=$(LIMIT_USERS) --users_file=$(DATA_DIR)/users.csv
.PHONY: playlists
playlists: ## Get user playlist IDs from Spotify
$(DATA_DIR)/playlists.csv: $(DATA_DIR)/users.csv
python train/get_playlists.py --limit=$(LIMIT_PLAYLISTS) --users_file=$(DATA_DIR)/users.csv --playlists_file=$(DATA_DIR)/playlists.csv
.PHONY: tracks
tracks: $(DATA_DIR)/tracks.csv ## Get playlist track IDs from Spotify
$(DATA_DIR)/tracks.csv $(DATA_DIR)/playlist_details.csv: $(DATA_DIR)/playlists.csv
python train/get_tracks.py --max_workers=$(MAX_WORKERS) --proxy=$(PROXY) --playlists_file=$(DATA_DIR)/playlists.csv --playlist_details_file=$(DATA_DIR)/playlist_details.csv --tracks_file=$(DATA_DIR)/tracks.csv
.PHONY: deduplicate
deduplicate: $(DATA_DIR)/tracks_dedup.csv $(DATA_DIR)/playlists_dedup.csv ## Deduplicate tracks
$(DATA_DIR)/tracks_dedup.csv $(DATA_DIR)/playlists_dedup.csv: $(DATA_DIR)/playlist_details.csv $(DATA_DIR)/tracks.csv
python train/deduplicate.py --dedup_tracks_file=$(DATA_DIR)/tracks_dedup.csv --dedup_playlists_file=$(DATA_DIR)/playlists_dedup.csv --min_count=$(MIN_COUNT) --tracks_file=$(DATA_DIR)/tracks.csv --playlists_file=$(DATA_DIR)/playlist_details.csv
.PHONY: search
search: $(DATA_DIR)/tracks_dedup.csv ## Search for track IDs to use for testing in config/track2vec.yaml and config/mp3tovec.yaml
bash -c 'trap "exit 0" SIGINT; python train/search_tracks.py' --tracks_file=$(DATA_DIR)/tracks_dedup.csv
.PHONY: track2vec
track2vec: $(MODELS_DIR)/track2vec ## Train Track2Vec model
$(MODELS_DIR)/track2vec: $(DATA_DIR)/tracks_dedup.csv $(DATA_DIR)/playlists_dedup.csv
@mkdir -p $(MODELS_DIR)
python train/train_track2vec.py --max_workers=$(MAX_WORKERS) --tracks_file=$(DATA_DIR)/tracks_dedup.csv --playlists_file=$(DATA_DIR)/playlists_dedup.csv --track2vec_model_file=$(MODELS_DIR)/track2vec
.PHONY: download
download: $(PREVIEWS_DIR)/done ## Download 30 second previews
$(PREVIEWS_DIR)/done: $(DATA_DIR)/tracks_dedup.csv
@mkdir -p $(PREVIEWS_DIR)
python train/download_previews.py --max_workers=$(MAX_WORKERS) --tracks_file=$(DATA_DIR)/tracks_dedup.csv --previews_dir=$(PREVIEWS_DIR)
@touch $(PREVIEWS_DIR)/done
.PHONY: spectrograms
spectrograms: $(SPECTROGRAMS_DIR)/done ## Generate spectrograms for first audio slice of each preview
$(SPECTROGRAMS_DIR)/done: $(PREVIEWS_DIR)/done
@mkdir -p $(SPECTROGRAMS_DIR)
python train/calc_spectrograms.py --max_workers=$(MAX_WORKERS) --previews_dir=$(PREVIEWS_DIR) --spectrograms_dir=$(SPECTROGRAMS_DIR)
@touch $(SPECTROGRAMS_DIR)/done
.PHONY: mp3tovec
mp3tovec: $(MODELS_DIR)/mp3tovec.ckpt ## Train MP3ToVec model
$(MODELS_DIR)/mp3tovec.ckpt: $(SPECTROGRAMS_DIR)/done $(MODELS_DIR)/track2vec $(DATA_DIR)/tracks_dedup.csv
python train/train_mp3tovec.py --spectrograms_dir=$(SPECTROGRAMS_DIR) --track2vec_model_file=$(MODELS_DIR)/track2vec --tracks_file=$(DATA_DIR)/tracks_dedup.csv --mp3tovec_model_dir=$(MODELS_DIR)
.PHONY: mp3tovecs
mp3tovecs: $(MODELS_DIR)/mp3tovecs.p ## Calculate MP3ToVec embeddings for the previews
$(MODELS_DIR)/mp3tovecs.p: $(PREVIEWS_DIR)/done $(MODELS_DIR)/mp3tovec.ckpt
python train/calc_mp3tovecs.py --max_workers=$(MAX_WORKERS) --mp3tovec_model_file=$(MODELS_DIR)/mp3tovec.ckpt --mp3tovecs_file=$(MODELS_DIR)/mp3tovecs.p --mp3s_dir=$(PREVIEWS_DIR)
.PHONY: tfidf
tfidf: $(MODELS_DIR)/mp3tovec.p ## Calculate MP3ToVec embedding per preview using TF-IDF
$(MODELS_DIR)/mp3tovec.p: $(MODELS_DIR)/mp3tovecs.p
python train/calc_tfidf.py --max_workers=$(MAX_WORKERS) --mp3tovecs_file=$(MODELS_DIR)/mp3tovecs.p --mp3tovec_file=$(MODELS_DIR)/mp3tovec.p
.PHONY: tf
tf: $(MODELS_DIR)/speccy_model ## Convert PyTorch model to TensorFlow
$(MODELS_DIR)/speccy_model: $(MODELS_DIR)/mp3tovec.ckpt
python train/pt_to_tf.py --pt_model_file=$(MODELS_DIR)/mp3tovec.ckpt --tf_model_file=$(MODELS_DIR)/speccy_model
.PHONY: install ## Install model in deej-ai.online app
install: $(MODELS_DIR)/mp3tovec.ckpt $(MODELS_DIR)/mp3tovec.p $(MODELS_DIR)/speccy_model $(DATA_DIR)/tracks_dedup.csv $(MODELS_DIR)/track2vec.p ## Install model in deej-ai.online application
python train/install_model.py --deejai_model_dir=$(DEEJAI_MODEL_DIR) --mp3tovec_model_file=$(MODELS_DIR)/speccy_model --mp3tovec_file=$(MODELS_DIR)/mp3tovec.p --tracks_file=$(DATA_DIR)/tracks_dedup.csv --track2vec_file=$(MODELS_DIR)/track2vec.p