forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeleenetssd_seg.cpp
201 lines (166 loc) · 6.11 KB
/
peleenetssd_seg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <stdio.h>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "platform.h"
#include "net.h"
#if NCNN_VULKAN
#include "gpu.h"
#endif // NCNN_VULKAN
struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};
static int detect_peleenet(const cv::Mat& bgr, std::vector<Object>& objects,ncnn::Mat &resized)
{
ncnn::Net peleenet;
#if NCNN_VULKAN
peleenet.opt.use_vulkan_compute = true;
#endif // NCNN_VULKAN
// model is converted from https://github.com/eric612/MobileNet-YOLO
// and can be downloaded from https://drive.google.com/open?id=1Wt6jKv13sBRMHgrGAJYlOlRF-o80pC0g
peleenet.load_param("pelee.param");
peleenet.load_model("pelee.bin");
const int target_size = 304;
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size);
const float mean_vals[3] = {103.9f, 116.7f, 123.6f};
const float norm_vals[3] = {0.017f,0.017f,0.017f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = peleenet.create_extractor();
// ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("detection_out",out);
// printf("%d %d %d\n", out.w, out.h, out.c);
objects.clear();
for (int i=0; i<out.h; i++)
{
const float* values = out.row(i);
Object object;
object.label = values[0];
object.prob = values[1];
object.rect.x = values[2] * img_w;
object.rect.y = values[3] * img_h;
object.rect.width = values[4] * img_w - object.rect.x;
object.rect.height = values[5] * img_h - object.rect.y;
objects.push_back(object);
}
ncnn::Mat seg_out;
ex.extract("sigmoid",seg_out);
resize_bilinear(seg_out,resized,img_w,img_h);
//resize_bicubic(seg_out,resized,img_w,img_h); // sharpness
return 0;
}
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects,ncnn::Mat map)
{
static const char* class_names[] = {"background",
"person","rider", "car","bus",
"truck","bike","motor",
"traffic light","traffic sign","train"};
cv::Mat image = bgr.clone();
const int color[] = {128,255,128,244,35,232};
const int color_count = sizeof(color) / sizeof(int);
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.rect.x;
int y = obj.rect.y - label_size.height - baseLine;
if (y < 0)
y = 0;
if (x + label_size.width > image.cols)
x = image.cols - label_size.width;
cv::rectangle(image, cv::Rect(cv::Point(x, y),
cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);
cv::putText(image, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
int width = map.w;
int height = map.h;
int size = map.c;
int img_index2 = 0;
float threshold = 0.45;
const float* ptr2 = map;
for (int i = 0; i < height; i++) {
unsigned char* ptr1 = image.ptr<unsigned char>(i);
int img_index1 = 0;
for (int j = 0; j < width; j++) {
float maxima = threshold;
int index = -1;
for (int c = 0; c < size; c++) {
//const float* ptr3 = map.channel(c);
const float* ptr3 = ptr2 + c*width*height;
if(ptr3[img_index2]>maxima) {
maxima = ptr3[img_index2];
index = c;
}
}
if(index > -1) {
int color_index = (index)*3;
if(color_index<color_count) {
int b = color[color_index];
int g = color[color_index+1];
int r = color[color_index+2];
ptr1[img_index1] = b/2 + ptr1[img_index1]/2;
ptr1[img_index1+1] = g/2 + ptr1[img_index1+1]/2;
ptr1[img_index1+2] = r/2 + ptr1[img_index1+2]/2;
}
}
img_index1+=3;
img_index2++;
}
}
cv::imshow("image", image);
cv::waitKey(0);
}
int main(int argc, char** argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
return -1;
}
const char* imagepath = argv[1];
cv::Mat m = cv::imread(imagepath, 1);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
#if NCNN_VULKAN
ncnn::create_gpu_instance();
#endif // NCNN_VULKAN
std::vector<Object> objects;
ncnn::Mat seg_out;
detect_peleenet(m, objects, seg_out);
#if NCNN_VULKAN
ncnn::destroy_gpu_instance();
#endif // NCNN_VULKAN
draw_objects(m, objects, seg_out);
return 0;
}