forked from pdollar/toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContents.m
46 lines (46 loc) · 2.33 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
% CLASSIFY
% See also
%
% Clustering:
% demoCluster - Clustering demo.
% demoGenData - Generate data drawn form a mixture of Gaussians.
% kmeans2 - Fast version of kmeans clustering.
% meanShift - meanShift clustering algorithm.
% meanShiftIm - Applies the meanShift algorithm to a joint spatial/range image.
% meanShiftImExplore - Visualization to help choose sigmas for meanShiftIm.
%
% Calculating distances efficiently:
% distMatrixShow - Useful visualization of a distance matrix of clustered points.
% pdist2 - Calculates the distance between sets of vectors.
% softMin - Calculates the softMin of a vector.
%
% Principal components analysis:
% pca - Principal components analysis (alternative to princomp).
% pcaApply - Companion function to pca.
% pcaRandVec - Generate random vectors in PCA subspace.
% pcaVisualize - Visualization of quality of approximation of X given principal comp.
% visualizeData - Project high dim. data unto principal components (PCA) for visualization.
%
% Confusion matrix display:
% confMatrix - Generates a confusion matrix according to true and predicted data labels.
% confMatrixShow - Used to display a confusion matrix.
%
% Radial Basis Functions (RBFs):
% rbfComputeBasis - Get locations and sizes of radial basis functions for use in rbf network.
% rbfComputeFtrs - Evaluate features of X given a set of radial basis functions.
% rbfDemo - Demonstration of rbf networks for regression.
%
% Fast random fern/forest classification/regression code:
% fernsClfApply - Apply learned fern classifier.
% fernsClfTrain - Train random fern classifier.
% fernsInds - Compute indices for each input by each fern.
% fernsRegApply - Apply learned fern regressor.
% fernsRegTrain - Train boosted fern regressor.
% forestApply - Apply learned forest classifier.
% forestTrain - Train random forest classifier.
%
% Fast boosted decision tree code:
% adaBoostTrain - Train boosted decision tree classifier.
% adaBoostApply - Apply learned boosted decision tree classifier.
% binaryTreeTrain - Train binary decision tree classifier.
% binaryTreeApply - Apply learned binary decision tree classifier.