forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaes.r
189 lines (166 loc) · 5.87 KB
/
aes.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# all_aes <- function(y) c(names(y$default_aes()), y$required_aes)
# geom_aes <- unlist(lapply(Geom$find_all(), all_aes))
# stat_aes <- unlist(lapply(Stat$find_all(), all_aes))
# all <- sort(unique(c(names(.base_to_ggplot), geom_aes, stat_aes)))
# dput(all)
.all_aesthetics <- c("adj", "alpha", "angle", "bg", "cex", "col", "color", "colour", "fg", "fill", "group", "hjust", "label", "linetype", "lower", "lty", "lwd", "max", "middle", "min", "order", "pch", "radius", "sample", "shape", "size", "srt", "upper", "vjust", "weight", "width", "x", "xend", "xmax", "xmin", "xintercept", "y", "yend", "ymax", "ymin", "yintercept", "z")
.base_to_ggplot <- c(
"col" = "colour",
"color" = "colour",
"pch" = "shape",
"cex" = "size",
"lty" = "linetype",
"lwd" = "size",
"srt" = "angle",
"adj" = "hjust",
"bg" = "fill",
"fg" = "colour",
"min" = "ymin",
"max" = "ymax"
)
#' Generate aesthetic mappings that describe how variables in the data are
#' mapped to visual properties (aesthetics) of geoms.
#'
#' \code{aes} creates a list of unevaluated expressions. This function also
#' performs partial name matching, converts color to colour, and old style R
#' names to ggplot names (eg. pch to shape, cex to size)
#'
#' @param x x value
#' @param y y value
#' @param ... List of name value pairs giving aesthetics to map.
#' @seealso \code{\link{aes_string}} for passing quoted variable names.
#" Useful when creating plots within user defined functions. Also,
#' \code{\link{aes_colour_fill_alpha}}, \code{\link{aes_group_order}},
#' \code{\link{aes_linetype_size_shape}} and \code{\link{aes_position}}
#' for more specific examples with different aesthetics.
#' @export
#' @examples
#' aes(x = mpg, y = wt)
#' aes(x = mpg ^ 2, y = wt / cyl)
aes <- function(x, y, ...) {
aes <- structure(as.list(match.call()[-1]), class="uneval")
rename_aes(aes)
}
#' @export
print.uneval <- function(x, ...) str(unclass(x))
#' @export
str.uneval <- function(object, ...) str(unclass(object), ...)
#' @export
"[.uneval" <- function(x, i, ...) structure(unclass(x)[i], class = "uneval")
#' @export
as.character.uneval <- function(x, ...) {
char <- as.character(unclass(x))
names(char) <- names(x)
char
}
# Rename American or old-style aesthetics name
rename_aes <- function(x) {
# Convert prefixes to full names
full <- match(names(x), .all_aesthetics)
names(x)[!is.na(full)] <- .all_aesthetics[full[!is.na(full)]]
rename(x, .base_to_ggplot, warn_missing = FALSE)
}
# Look up the scale that should be used for a given aesthetic
aes_to_scale <- function(var) {
var[var %in% c("x", "xmin", "xmax", "xend", "xintercept")] <- "x"
var[var %in% c("y", "ymin", "ymax", "yend", "yintercept")] <- "y"
var
}
# Figure out if an aesthetic is a position aesthetic or not
is_position_aes <- function(vars) {
aes_to_scale(vars) %in% c("x", "y")
}
#' Generate aesthetic mappings from a string
#'
#' Aesthetic mappings describe how variables in the data are mapped to visual
#' properties (aesthetics) of geoms. Compared to aes this function operates
#' on strings rather than expressions.
#'
#' \code{aes_string} is particularly useful when writing functions that create
#' plots because you can use strings to define the aesthetic mappings, rather
#' than having to mess around with expressions.
#'
#' @param ... List of name value pairs
#' @seealso \code{\link{aes}}
#' @export
#' @examples
#' aes_string(x = "mpg", y = "wt")
#' aes(x = mpg, y = wt)
aes_string <- function(...) {
mapping <- list(...)
mapping[sapply(mapping, is.null)] <- "NULL"
parsed <- lapply(mapping, function(x) parse(text = x)[[1]])
structure(rename_aes(parsed), class = "uneval")
}
#' Given a character vector, create a set of identity mappings
#'
#' @param vars vector of variable names
#' @export
#' @examples
#' aes_all(names(mtcars))
#' aes_all(c("x", "y", "col", "pch"))
aes_all <- function(vars) {
names(vars) <- vars
vars <- rename_aes(vars)
structure(
lapply(vars, function(x) parse(text=x)[[1]]),
class = "uneval"
)
}
#' Automatic aesthetic mapping
#'
#' @param data data.frame or names of variables
#' @param ... aesthetics that need to be explicitly mapped.
#' @export
#' @examples
#' df <- data.frame(x = 1, y = 1, colour = 1, label = 1, pch = 1)
#' aes_auto(df)
#' aes_auto(names(df))
#'
#' df <- data.frame(xp = 1, y = 1, colour = 1, txt = 1, foo = 1)
#' aes_auto(df, x = xp, label = txt)
#' aes_auto(names(df), x = xp, label = txt)
#'
#' df <- data.frame(foo = 1:3)
#' aes_auto(df, x = xp, y = yp)
#' aes_auto(df)
aes_auto <- function(data = NULL, ...) {
# detect names of data
if (is.null(data)) {
stop("aes_auto requires data.frame or names of data.frame.")
} else if (is.data.frame(data)) {
vars <- names(data)
} else {
vars <- data
}
# automatically detected aes
vars <- intersect(.all_aesthetics, vars)
names(vars) <- vars
aes <- lapply(vars, function(x) parse(text=x)[[1]])
# explicitly defined aes
if (length(match.call()) > 2) {
args <- as.list(match.call()[-1])
aes <- c(aes, args[names(args) != "data"])
}
structure(rename_aes(aes), class = "uneval")
}
# Aesthetic defaults
# Convenience method for setting aesthetic defaults
#
# @param data values from aesthetic mappings
# @param y. defaults
# @param params. user specified values
# @value a data.frame, with all factors converted to character strings
aesdefaults <- function(data, y., params.) {
updated <- modifyList(y., params. %||% list())
cols <- tryapply(defaults(data, updated), function(x) eval(x, data, globalenv()))
# Need to be careful here because stat_boxplot uses a list-column to store
# a vector of outliers
cols <- Filter(function(x) is.atomic(x) || is.list(x), cols)
list_vars <- sapply(cols, is.list)
cols[list_vars] <- lapply(cols[list_vars], I)
df <- data.frame(cols, stringsAsFactors = FALSE)
factors <- sapply(df, is.factor)
df[factors] <- lapply(df[factors], as.character)
df
}