Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VGG16,显存溢出问题 #18

Open
KMY-SEU opened this issue Mar 3, 2020 · 6 comments
Open

VGG16,显存溢出问题 #18

KMY-SEU opened this issue Mar 3, 2020 · 6 comments

Comments

@KMY-SEU
Copy link

KMY-SEU commented Mar 3, 2020

config文件里面,我设置了参数batch_size = 32,normal_size = 224,然后使用VGG16之后,显存直接溢出了。训练集共3400多张图片,按说不至于吧。

我尝试了使用CPU + 内存运行,我显存8G,内存32G,想看下实际模型占用需要多少内存,结果一个batch之后,内存占用竟然达到31.1G。全部加载完图片大概是10G内存占用,也就是说中间21.1G是模型的。

我想确认下,请问up你有遇到过这个情况吗?或者有比较好的解释和解决方案吗?

@KMY-SEU
Copy link
Author

KMY-SEU commented Mar 3, 2020

我发现一个可能的解释了,那个FC层,AlexNet,VGG以及其他model,都使用了两层FC,每层4096个单元,占用了大量的内存。

but我感觉应该用不到这么多节点。

@KMY-SEU
Copy link
Author

KMY-SEU commented Mar 3, 2020

呃,不行,还是不够。。。默认的keras的数据类型是float32是吗?

我之前用tensorflow直接搭了个inception v4,299x299x3 size,也是float32,没有显存溢出问题。

这边代码应该是有点问题的。。

@KMY-SEU
Copy link
Author

KMY-SEU commented Mar 3, 2020

卧槽。。。。up主,你的VGG16模型那边,前两层卷积后,少了一次最大池化。。。。VGG19也是。

@tslgithub
Copy link
Owner

把normal_size设小点,没有一定说要用224大小

@tslgithub
Copy link
Owner

少了池化的问题,我看一下哈

@L1angY
Copy link

L1angY commented Feb 13, 2021

你是不是用了64位的float

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants