forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsd_vae.py
216 lines (154 loc) · 6.65 KB
/
sd_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import safetensors.torch
import os
import collections
from collections import namedtuple
from modules import paths, shared, devices, script_callbacks, sd_models
import glob
from copy import deepcopy
vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE"))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
vae_dict = {}
base_vae = None
loaded_vae_file = None
checkpoint_info = None
checkpoints_loaded = collections.OrderedDict()
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
return base_vae
return None
def store_base_vae(model):
global base_vae, checkpoint_info
if checkpoint_info != model.sd_checkpoint_info:
assert not loaded_vae_file, "Trying to store non-base VAE!"
base_vae = deepcopy(model.first_stage_model.state_dict())
checkpoint_info = model.sd_checkpoint_info
def delete_base_vae():
global base_vae, checkpoint_info
base_vae = None
checkpoint_info = None
def restore_base_vae(model):
global loaded_vae_file
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
print("Restoring base VAE")
_load_vae_dict(model, base_vae)
loaded_vae_file = None
delete_base_vae()
def get_filename(filepath):
return os.path.basename(filepath)
def refresh_vae_list():
vae_dict.clear()
paths = [
os.path.join(sd_models.model_path, '**/*.vae.ckpt'),
os.path.join(sd_models.model_path, '**/*.vae.pt'),
os.path.join(sd_models.model_path, '**/*.vae.safetensors'),
os.path.join(vae_path, '**/*.ckpt'),
os.path.join(vae_path, '**/*.pt'),
os.path.join(vae_path, '**/*.safetensors'),
]
if shared.cmd_opts.ckpt_dir is not None and os.path.isdir(shared.cmd_opts.ckpt_dir):
paths += [
os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.ckpt'),
os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.pt'),
os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.safetensors'),
]
if shared.cmd_opts.vae_dir is not None and os.path.isdir(shared.cmd_opts.vae_dir):
paths += [
os.path.join(shared.cmd_opts.vae_dir, '**/*.ckpt'),
os.path.join(shared.cmd_opts.vae_dir, '**/*.pt'),
os.path.join(shared.cmd_opts.vae_dir, '**/*.safetensors'),
]
candidates = []
for path in paths:
candidates += glob.iglob(path, recursive=True)
for filepath in candidates:
name = get_filename(filepath)
vae_dict[name] = filepath
def find_vae_near_checkpoint(checkpoint_file):
checkpoint_path = os.path.splitext(checkpoint_file)[0]
for vae_location in [checkpoint_path + ".vae.pt", checkpoint_path + ".vae.ckpt", checkpoint_path + ".vae.safetensors"]:
if os.path.isfile(vae_location):
return vae_location
return None
def resolve_vae(checkpoint_file):
if shared.cmd_opts.vae_path is not None:
return shared.cmd_opts.vae_path, 'from commandline argument'
is_automatic = shared.opts.sd_vae in {"Automatic", "auto"} # "auto" for people with old config
vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or is_automatic):
return vae_near_checkpoint, 'found near the checkpoint'
if shared.opts.sd_vae == "None":
return None, None
vae_from_options = vae_dict.get(shared.opts.sd_vae, None)
if vae_from_options is not None:
return vae_from_options, 'specified in settings'
if not is_automatic:
print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead")
return None, None
def load_vae_dict(filename, map_location):
vae_ckpt = sd_models.read_state_dict(filename, map_location=map_location)
vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
return vae_dict_1
def load_vae(model, vae_file=None, vae_source="from unknown source"):
global vae_dict, loaded_vae_file
# save_settings = False
cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
if vae_file:
if cache_enabled and vae_file in checkpoints_loaded:
# use vae checkpoint cache
print(f"Loading VAE weights {vae_source}: cached {get_filename(vae_file)}")
store_base_vae(model)
_load_vae_dict(model, checkpoints_loaded[vae_file])
else:
assert os.path.isfile(vae_file), f"VAE {vae_source} doesn't exist: {vae_file}"
print(f"Loading VAE weights {vae_source}: {vae_file}")
store_base_vae(model)
vae_dict_1 = load_vae_dict(vae_file, map_location=shared.weight_load_location)
_load_vae_dict(model, vae_dict_1)
if cache_enabled:
# cache newly loaded vae
checkpoints_loaded[vae_file] = vae_dict_1.copy()
# clean up cache if limit is reached
if cache_enabled:
while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
# If vae used is not in dict, update it
# It will be removed on refresh though
vae_opt = get_filename(vae_file)
if vae_opt not in vae_dict:
vae_dict[vae_opt] = vae_file
elif loaded_vae_file:
restore_base_vae(model)
loaded_vae_file = vae_file
# don't call this from outside
def _load_vae_dict(model, vae_dict_1):
model.first_stage_model.load_state_dict(vae_dict_1)
model.first_stage_model.to(devices.dtype_vae)
def clear_loaded_vae():
global loaded_vae_file
loaded_vae_file = None
unspecified = object()
def reload_vae_weights(sd_model=None, vae_file=unspecified):
from modules import lowvram, devices, sd_hijack
if not sd_model:
sd_model = shared.sd_model
checkpoint_info = sd_model.sd_checkpoint_info
checkpoint_file = checkpoint_info.filename
if vae_file == unspecified:
vae_file, vae_source = resolve_vae(checkpoint_file)
else:
vae_source = "from function argument"
if loaded_vae_file == vae_file:
return
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
load_vae(sd_model, vae_file, vae_source)
sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print("VAE weights loaded.")
return sd_model