forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_1d_solver.py
234 lines (181 loc) · 7.04 KB
/
test_1d_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""Tests for module 1d Wasserstein solver"""
# Author: Adrien Corenflos <[email protected]>
# Nicolas Courty <[email protected]>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.lp import wasserstein_1d
from ot.backend import get_backend_list, tf
from scipy.stats import wasserstein_distance
backend_list = get_backend_list()
def test_emd_1d_emd2_1d_with_weights():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
w_u = rng.uniform(0., 1., n)
w_u = w_u / w_u.sum()
w_v = rng.uniform(0., 1., m)
w_v = w_v / w_v.sum()
M = ot.dist(u, v, metric='sqeuclidean')
G, log = ot.emd(w_u, w_v, M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, w_u, w_v, metric='sqeuclidean', log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, w_u, w_v, metric='sqeuclidean', log=False)
wass1d_euc = ot.emd2_1d(u, v, w_u, w_v, metric='euclidean', log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)), w_u, w_v)
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(w_u, G.sum(1))
np.testing.assert_allclose(w_v, G.sum(0))
@pytest.mark.parametrize('nx', backend_list)
def test_wasserstein_1d(nx):
from scipy.stats import wasserstein_distance
rng = np.random.RandomState(0)
n = 100
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
xb = nx.from_numpy(x)
rho_ub = nx.from_numpy(rho_u)
rho_vb = nx.from_numpy(rho_v)
# test 1 : wasserstein_1d should be close to scipy W_1 implementation
np.testing.assert_almost_equal(wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1),
wasserstein_distance(x, x, rho_u, rho_v))
# test 2 : wasserstein_1d should be close to one when only translating the support
np.testing.assert_almost_equal(wasserstein_1d(xb, xb + 1, p=2),
1.)
# test 3 : arrays test
X = np.stack((np.linspace(0, 5, n), np.linspace(0, 5, n) * 10), -1)
Xb = nx.from_numpy(X)
res = wasserstein_1d(Xb, Xb, rho_ub, rho_vb, p=2)
np.testing.assert_almost_equal(100 * res[0], res[1], decimal=4)
def test_wasserstein_1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb = nx.from_numpy(x, type_as=tp)
rho_ub = nx.from_numpy(rho_u, type_as=tp)
rho_vb = nx.from_numpy(rho_v, type_as=tp)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_wasserstein_1d_device_tf():
if not tf:
return
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb = nx.from_numpy(x)
rho_ub = nx.from_numpy(rho_u)
rho_vb = nx.from_numpy(rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb = nx.from_numpy(x)
rho_ub = nx.from_numpy(rho_u)
rho_vb = nx.from_numpy(rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
assert nx.dtype_device(res)[1].startswith("GPU")
def test_emd_1d_emd2_1d():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
M = ot.dist(u, v, metric='sqeuclidean')
G, log = ot.emd([], [], M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, [], [], metric='sqeuclidean', log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, [], [], metric='sqeuclidean', log=False)
wass1d_euc = ot.emd2_1d(u, v, [], [], metric='euclidean', log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)))
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(np.ones((n,)) / n, G.sum(1))
np.testing.assert_allclose(np.ones((m,)) / m, G.sum(0))
# check G is similar
np.testing.assert_allclose(G, G_1d, atol=1e-15)
# check AssertionError is raised if called on non 1d arrays
u = np.random.randn(n, 2)
v = np.random.randn(m, 2)
with pytest.raises(AssertionError):
ot.emd_1d(u, v, [], [])
def test_emd1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb = nx.from_numpy(x, type_as=tp)
rho_ub = nx.from_numpy(rho_u, type_as=tp)
rho_vb = nx.from_numpy(rho_v, type_as=tp)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_emd1d_device_tf():
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb = nx.from_numpy(x)
rho_ub = nx.from_numpy(rho_u)
rho_vb = nx.from_numpy(rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb = nx.from_numpy(x)
rho_ub = nx.from_numpy(rho_u)
rho_vb = nx.from_numpy(rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
assert nx.dtype_device(emd)[1].startswith("GPU")