forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sliced.py
270 lines (189 loc) · 6.86 KB
/
test_sliced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""Tests for module sliced"""
# Author: Adrien Corenflos <[email protected]>
# Nicolas Courty <[email protected]>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.sliced import get_random_projections
from ot.backend import tf
def test_get_random_projections():
rng = np.random.RandomState(0)
projections = get_random_projections(1000, 50, rng)
np.testing.assert_almost_equal(np.sum(projections ** 2, 0), 1.)
def test_sliced_same_dist():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
res = ot.sliced_wasserstein_distance(x, x, u, u, 10, seed=rng)
np.testing.assert_almost_equal(res, 0.)
def test_sliced_bad_shapes():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(n, 4)
u = ot.utils.unif(n)
with pytest.raises(ValueError):
_ = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng)
def test_sliced_log():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 4)
y = rng.randn(n, 4)
u = ot.utils.unif(n)
res, log = ot.sliced_wasserstein_distance(x, y, u, u, 10, p=1, seed=rng, log=True)
assert len(log) == 2
projections = log["projections"]
projected_emds = log["projected_emds"]
assert projections.shape[1] == len(projected_emds) == 10
for emd in projected_emds:
assert emd > 0
def test_sliced_different_dists():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
y = rng.randn(n, 2)
res = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng)
assert res > 0.
def test_1d_sliced_equals_emd():
n = 100
m = 120
rng = np.random.RandomState(0)
x = rng.randn(n, 1)
a = rng.uniform(0, 1, n)
a /= a.sum()
y = rng.randn(m, 1)
u = ot.utils.unif(m)
res = ot.sliced_wasserstein_distance(x, y, a, u, 10, seed=42)
expected = ot.emd2_1d(x.squeeze(), y.squeeze(), a, u)
np.testing.assert_almost_equal(res ** 2, expected)
def test_max_sliced_same_dist():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
res = ot.max_sliced_wasserstein_distance(x, x, u, u, 10, seed=rng)
np.testing.assert_almost_equal(res, 0.)
def test_max_sliced_different_dists():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
y = rng.randn(n, 2)
res, log = ot.max_sliced_wasserstein_distance(x, y, u, u, 10, seed=rng, log=True)
assert res > 0.
def test_sliced_backend(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
n_projections = 20
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
val0 = ot.sliced_wasserstein_distance(x, y, projections=P)
val = ot.sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
val2 = ot.sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
assert val > 0
assert val == val2
valb = nx.to_numpy(ot.sliced_wasserstein_distance(xb, yb, projections=Pb))
assert np.allclose(val0, valb)
def test_sliced_backend_type_devices(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb = nx.from_numpy(x, type_as=tp)
yb = nx.from_numpy(y, type_as=tp)
Pb = nx.from_numpy(P, type_as=tp)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_sliced_backend_device_tf():
nx = ot.backend.TensorflowBackend()
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
assert nx.dtype_device(valb)[1].startswith("GPU")
def test_max_sliced_backend(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
n_projections = 20
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
val0 = ot.max_sliced_wasserstein_distance(x, y, projections=P)
val = ot.max_sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
val2 = ot.max_sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
assert val > 0
assert val == val2
valb = nx.to_numpy(ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb))
assert np.allclose(val0, valb)
def test_max_sliced_backend_type_devices(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb = nx.from_numpy(x, type_as=tp)
yb = nx.from_numpy(y, type_as=tp)
Pb = nx.from_numpy(P, type_as=tp)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_max_sliced_backend_device_tf():
nx = ot.backend.TensorflowBackend()
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb = nx.from_numpy(x)
yb = nx.from_numpy(y)
Pb = nx.from_numpy(P)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
assert nx.dtype_device(valb)[1].startswith("GPU")