-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIDAPICourseworkLibrary.py
108 lines (106 loc) · 4.06 KB
/
IDAPICourseworkLibrary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from PIL import Image
import glob, os
import numpy
# Function to read in data from a file in the format defined by Duncan
def ReadFile(filename):
f = open(filename);
# the first line contains the number of variables. the function int converts a
# string to an integer
noVariables = int(f.readline())
# the second line contains the number of root nodes
noRoots = int(f.readline());
# the third line contains the number of states of each variable
# this command extracts a list of integers. The split method breaks the line into a list of substrings
# The map function applies a function (int) to a list (the substrings) to produce a list of integers.
noStates = map(int,((f.readline()).split()))
# the fourth line contains a single integer the number of data points
noDataPoints = int(f.readline())
# all the subsequent lines of the file are data points. Each line is extracted as a list of integers which is
# appended to the list datain.
datain = []
for x in range(noDataPoints):
datain.append(map(int,((f.readline()).split())))
f.close()
return [noVariables, noRoots, noStates, noDataPoints, datain]
# Function to write an array to a results file
# the array is assumed to be either of proababilities of dependencies
def AppendArray(filename, anArray):
f = open(filename, 'a')
for row in range(anArray.shape[0]):
for col in range(anArray.shape[1]):
f.write( '%6.3f ' % (anArray[row,col]))
f.write('\n')
f.write('\n\n')
f.close()
#Function to write a list to a results file
def AppendList(filename, aList):
f = open(filename, 'a')
for row in range(aList.shape[0]):
f.write( '%6.3f ' % (aList[row]))
f.write('\n\n')
f.close()
#Function to write a string to a results file
def AppendString(filename, aString):
f = open(filename, 'a')
f.write('%s\n' % (aString))
f.close()
#
# Image handline functions
#
# These functions turn images into data sets and vice versa
#
# Function to turn a principal component into an image and save it. The assumed resolution os 92 by 112 pixels.
# The component is a one dimensional representation of an image with each row concatinated
def SaveEigenface(component,filename):
theMax = max(component)
theMin = min(component)
scale = 255.0/(theMax-theMin)
eigenfaceImage = map(int,(component - theMin) * scale)
im = Image.new('L',(92,112))
for y in range(im.size[1]):
for x in range(im.size[0]):
im.putpixel((x,y),eigenfaceImage[x+92*y])
im.save(filename)
#
# Function to convert images into a data format equivalent to the above format where each row of an array is
# one image with rows concatinated into a single vector.
# The images for this project are assumed to be all of resolution 92 by 112 pixels and are taken from
# the current directory in .pgm format
def ReadImages():
datain = []
for infile in glob.glob("*.pgm"):
#filename, ext = os.path.splitext(infile)
#print filename
im = Image.open(infile)
pixels = []
for y in range(im.size[1]):
for x in range(im.size[0]):
pixels.append(im.getpixel((x,y)))
datain.append(pixels)
return datain
def ReadOneImage(filename):
datain = []
im = Image.open(filename)
for y in range(im.size[1]):
for x in range(im.size[0]):
datain.append(im.getpixel((x,y)))
return datain
#Functions to save and read an eigenface basis to a file
#Needed for testing tasks 4.4 to 4.6 in the event that task 4.3 is unattempted or unsucessful
def WriteEigenfaceBasis(pcBasis):
f = open("EigenfaceBasis.txt", "w")
for row in range(pcBasis.shape[0]):
for col in range(pcBasis.shape[1]):
f.write( '%12.10f ' % (pcBasis[row,col]))
f.write('\n')
f.write('\n\n')
f.close()
def ReadEigenfaceBasis():
f = open("PrincipalComponents.txt");
datain = []
for line in range(10):
datain.append(map(float,(f.readline().split())))
f.close()
return numpy.array(datain)