forked from 2003pro/ScaleBiO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
262 lines (227 loc) · 9.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
All rights reserved.
'''
# pylint: disable=too-many-locals
# pylint: disable=invalid-name
# pylint: disable=no-member
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-few-public-methods
# pylint: disable=too-many-arguments
# pylint: disable=self-assigning-variable
# pylint: disable=too-many-branches
# pylint: disable=too-many-statements
# pylint: disable=literal-comparison
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import logging.config
import os
import sys
import wandb
from functools import partial
from configparser import ConfigParser
from parse_args import parse_argument, parse_args_dict
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from minmax import MinmaxConfig
from minmax import Minmax
import transformers
from accelerate import Accelerator
from data import JsonDataset, tokenize_prompt, tokenize_conversion, tokenize_text_only
from prompt_maker import PromptMaker
def get_dataset(json_data_dir: str, response_loss_only, tokenizer, max_length, sharegpt_format: bool, pretrain: bool):
if pretrain:
transform=partial(tokenize_text_only, response_loss_only=response_loss_only, max_length=max_length, tokenizer=tokenizer)
elif sharegpt_format:
transform=partial(tokenize_conversion, response_loss_only=response_loss_only, max_length=max_length, tokenizer=tokenizer)
else:
transform=partial(tokenize_prompt, response_loss_only=response_loss_only, max_length=max_length, tokenizer=tokenizer, prompt_maker=PromptMaker())
dataset=JsonDataset(json_data=json_data_dir,
shuffle=True, train=True,
transform=transform,
chunk_long_text=pretrain)
return dataset
def load_data(
args,
train_sample_percentage: float=0,
validation_sample_percentage: float=0,
):
"""Loads data in pytorch.
Args:
dataset_name: str. Supported datasets ['cifar10', 'cifar100'].
batch_size: int.
train_sample_percentage: float.
validation_sample_percentage: float.
args: The parsed commandline arguments.
Returns:
(train_loader, test_loader, stat), where,
* train_loader: a DataLoader object for loading training data.
* test_loader, a DataLoader object for loading test data.
* stat_dict: a dict maps data statistics names to their values, e.g.
'num_sample', 'num_class'.
"""
# Chooses dataset
tokenizer=transformers.AutoTokenizer.from_pretrained(args.tokenizer_name)
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
train_dataset = get_dataset(
args.train_data,
args.response_loss_only,
tokenizer,
max_length=args.max_length,
sharegpt_format=args.sharegpt_format,
pretrain=args.pretrain
)
print(train_dataset)
print(train_dataset[0])
val_dataset = get_dataset(
args.val_data,
args.response_loss_only,
tokenizer,
max_length=args.max_length,
sharegpt_format=args.sharegpt_format,
pretrain=False
)
test_dataset = get_dataset(
args.test_data,
args.response_loss_only,
tokenizer,
max_length=args.max_length,
sharegpt_format=args.sharegpt_format,
pretrain=False
)
train_loader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=transformers.DataCollatorForSeq2Seq(tokenizer, padding=True, pad_to_multiple_of=8, return_tensors="pt"),
num_workers=args.num_dataload_worker,
batch_size=args.micro_batch_size)
val_loader = DataLoader(
val_dataset,
shuffle=True,
collate_fn=transformers.DataCollatorForSeq2Seq(tokenizer, padding=True, pad_to_multiple_of=8, return_tensors="pt"),
num_workers=args.num_dataload_worker,
batch_size=args.micro_batch_size)
val_loader_for_eval = DataLoader(
val_dataset,
shuffle=False,
collate_fn=transformers.DataCollatorForSeq2Seq(tokenizer, padding=True, pad_to_multiple_of=8, return_tensors="pt"),
num_workers=args.num_dataload_worker,
batch_size=args.val_batch_size)
test_loader = DataLoader(
test_dataset,
shuffle=True,
collate_fn=transformers.DataCollatorForSeq2Seq(tokenizer, padding=True, pad_to_multiple_of=8, return_tensors="pt"),
num_workers=args.num_dataload_worker,
batch_size=args.val_batch_size)
# Prepares necessary training information
stat_dict = {}
return train_loader, val_loader, val_loader_for_eval, test_loader, stat_dict
def optimize(
train_loader,
val_loader,
val_loader_for_eval,
test_loader,
args,
optimizer_args_dict,
lr_scheduler_args_dict,
accelerator
):
"""Runs optimization in pytorch.
Args:
train_loader: DataLoader for loading batches of training samples.
val_loader: DataLoader for loading batches of validation samples.
val_loader_for_eval: DataLoader for loading batches of validation
samples. This loader exists, so that the evaluation process does
not affect the reproducibility of the training process.
test_loader: DataLoader for loading batches of test samples.
image_shape: torch.Size, the shape of the image.
num_class: int, the number of classes.
algorithm_type: a str specifies the algorithm type.
args: a 'class-like' object, the content parsed from commandline. It
elements can be directly accessed in a way like 'args.num_epoch'.
optimizer_args_dict: a dict mapping optimizer arguments to their
values. Except one extra key "name", which maps to optimizer name.
lr_scheduler_args_dict: a dict mapping lr scheduler arguments to
their values. Except one extra key "name", which maps to
lr scheduler name.
Raises:
UnsupportedModelError if 'model_type' not supported.
"""
config = MinmaxConfig(
args=args,
optimizer_args_dict=optimizer_args_dict,
lr_scheduler_args_dict=lr_scheduler_args_dict,
)
algorithm = Minmax(config)
algorithm.run(
train_loader=train_loader,
val_loader_for_train=val_loader,
val_loader_for_eval=val_loader_for_eval,
test_loader=test_loader,
use_wandb=args.use_wandb,
accelerator=accelerator
)
def main():
"""Uses deep learning models to analyze SGD with learning rate schedule."""
# Parses arguments and loads configurations
args = parse_argument(sys.argv)
optimizer_args_dict = parse_args_dict(args.optimizer)
lr_scheduler_args_dict = parse_args_dict(args.lr_scheduler)
logging.config.fileConfig(args.logging_conf_file)
logging.info('#################################################')
logging.info('args = %s', str(args))
# Controls pseudorandom behavior
if args.pseudo_random:
os.environ['PYTHONHASHSEED'] = '0'
os.environ['TF_DETERMINISTIC_OPS'] = '1'
random.seed(args.seed + 1)
np.random.seed(args.seed + 1)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print(f'set seed to {args.seed}')
# Loads training/validation/test data
train_loader, val_loader, val_loader_for_eval, test_loader, stat_dict = load_data(args=args)
grad_accumulation_steps = args.global_batch_size // args.micro_batch_size
world_size = int(os.environ.get("WORLD_SIZE", 1))
grad_accumulation_steps = grad_accumulation_steps // world_size
# accelerator=Accelerator(mixed_precision='fp16',
# gradient_accumulation_steps=grad_accumulation_steps) if args.fp16 else Accelerator(gradient_accumulation_steps=grad_accumulation_steps)
accelerator=Accelerator(mixed_precision='bf16',
gradient_accumulation_steps=1) if args.bf16 else Accelerator(gradient_accumulation_steps=1)
# Runs optimization
if args.use_wandb and accelerator.is_main_process:
wandb.init(
project=args.wandb_project,
name=args.wandb_run_name,
config=args
)
try:
optimize(
train_loader=train_loader,
val_loader=val_loader,
val_loader_for_eval=val_loader_for_eval,
test_loader=test_loader,
args=args,
optimizer_args_dict=optimizer_args_dict,
lr_scheduler_args_dict=lr_scheduler_args_dict,
accelerator=accelerator
)
except Exception as e:
if args.use_wandb and accelerator.is_main_process:
wandb.finish()
raise e
if args.use_wandb and accelerator.is_main_process:
wandb.finish()
if __name__ == '__main__':
main()