-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathextract_r2d2.py
114 lines (98 loc) · 4.25 KB
/
extract_r2d2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import sys
from PIL import Image
import numpy as np
import torch
import argparse
from glob import glob
import h5py
import json
sys.path.append(os.path.join('third_party', 'r2d2'))
from third_party.r2d2.tools import common
from third_party.r2d2.tools.dataloader import norm_RGB
from third_party.r2d2.nets.patchnet import *
from third_party.r2d2.extract import load_network, NonMaxSuppression, extract_multiscale
# Adapted from third_party/r2d2/extract.py
if __name__ == '__main__':
parser = argparse.ArgumentParser("Extract R2D2 features for IMW2020")
parser.add_argument("--model", type=str, required=True, help='Model path')
parser.add_argument(
"--num_keypoints", type=int, default=5000, help='Number of keypoints')
parser.add_argument("--scale-f", type=float, default=2**0.25)
parser.add_argument("--min-size", type=int, default=256)
parser.add_argument("--max-size", type=int, default=1024)
parser.add_argument("--min-scale", type=float, default=0)
parser.add_argument("--max-scale", type=float, default=1)
parser.add_argument("--reliability-thr", type=float, default=0.7)
parser.add_argument("--repeatability-thr", type=float, default=0.7)
parser.add_argument(
"--gpu", type=int, nargs='+', default=[0], help='Use -1 for CPU')
parser.add_argument(
"--data_path", type=str, default=os.path.join('..', 'imw-2020'))
parser.add_argument(
"--save_path",
type=str,
required=True,
help='Path to store the features')
parser.add_argument(
"--subset",
default='both',
type=str,
help='Options: "val", "test", "both"')
args = parser.parse_args()
seqs = []
if args.subset not in ['val', 'test', 'both']:
raise ValueError('Unknown value for --subset')
if args.subset in ['val', 'both']:
with open(os.path.join('data', 'val.json')) as f:
seqs += json.load(f)
if args.subset in ['test', 'both']:
with open(os.path.join('data', 'test.json')) as f:
seqs += json.load(f)
print('Processing the following scenes: {}'.format(seqs))
iscuda = common.torch_set_gpu(args.gpu)
net = load_network(args.model)
if iscuda:
net = net.cuda()
detector = NonMaxSuppression(
rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr)
for seq in seqs:
print('Processing scene "{}"'.format(seq))
if not os.path.isdir('{}/{}'.format(args.save_path, seq)):
os.makedirs('{}/{}'.format(args.save_path, seq))
images = glob('{}/{}/*.jpg'.format(args.data_path, seq))
num_kp = []
with h5py.File('{}/{}/keypoints.h5'.format(args.save_path, seq), 'w') as f_kp, \
h5py.File('{}/{}/descriptors.h5'.format(args.save_path, seq), 'w') as f_desc, \
h5py.File('{}/{}/scores.h5'.format(args.save_path, seq), 'w') as f_score, \
h5py.File('{}/{}/scales.h5'.format(args.save_path, seq), 'w') as f_scale:
for fn in images:
key = os.path.splitext(os.path.basename(fn))[0]
img = Image.open(fn).convert('RGB')
img = norm_RGB(img)[None]
if iscuda:
img = img.cuda()
xys, desc, scores = extract_multiscale(
net,
img,
detector,
scale_f=args.scale_f,
min_scale=args.min_scale,
max_scale=args.max_scale,
min_size=args.min_size,
max_size=args.max_size,
verbose=False)
kp = xys.cpu().numpy()[:, :2]
scales = xys.cpu().numpy()[:, 2]
desc = desc.cpu().numpy()
scores = scores.cpu().numpy()
idxs = scores.argsort()[-args.num_keypoints:]
f_kp[key] = kp[idxs]
f_desc[key] = desc[idxs]
f_score[key] = scores[idxs]
f_scale[key] = scales[idxs]
num_kp.append(len(f_kp[key]))
print('Image "{}/{}" -> {} features'.format(
seq, key, num_kp[-1]))
print('Finished processing scene "{}" -> {} features/image'.format(
seq, np.array(num_kp).mean()))