This repository contains utilities to extract local features for the Image Matching Benchmark and its associated challenge. For details please refer to the website.
Data can be downloaded here: you may want to download the images for validation and testing. Most of the scripts assume that the images are in ../imw-2020
, as follows:
$ ~/image-matching-benchmark-baselines $ ls ../imw-2020/
british_museum lincoln_memorial_statue milan_cathedral piazza_san_marco sacre_coeur st_pauls_cathedral united_states_capitol
florence_cathedral_side london_bridge mount_rushmore reichstag sagrada_familia st_peters_square
$ ~/image-matching-benchmark-baselines $ ls ../imw-2020/british_museum/
00350405_2611802704.jpg 26237164_4796395587.jpg 45839934_4117745134.jpg [...]
You may need to format the validation set in this way.
Initialize the submodules by running the following:
git submodule update --init
We provide support for the following methods:
- Hardnet
- HardnetAmos
- GeoDesc
- SOSNet
- L2Net
- Log-polar descriptor
- Superpoint
- D2-Net
- DELF
- Contextdesc
- R2D2
We have pre-packaged conda environments: see below for details. You can install miniconda following these instructions (we have had problems with the latest version -- consider an older one). You can install an environment with:
conda create env -f system/<environment>.yml
And switch between them with:
conda deactivate
conda activate <environment>
Many learned descriptors require pre-generated patches. This functionality is useful by itself, so we moved it to a separate package. You can install it with pip install extract_patches
: please note that this requires python 3.6, as the package is generated via nbdev). You may do do this with the system/r2d2-python3.6.yml
environment (which also requires 3.6 due to formatted string literals) or create a different environment.
To extract patches with the default configuration to ../benchmark-patches-8k
, run:
python detect_sift_keypoints_and_extract_patches.py
This will create the following HDF5 files:
$ stat -c "%s %n" ../benchmark-patches-8k/british_museum/*
6414352 ../benchmark-patches-8k/british_museum/angles.h5
12789024 ../benchmark-patches-8k/british_museum/keypoints.h5
2447913728 ../benchmark-patches-8k/british_museum/patches.h5
6414352 ../benchmark-patches-8k/british_museum/scales.h5
6414352 ../benchmark-patches-8k/british_museum/scores.h5
You can also extract patches with a fixed orientation with the flag --force_upright=no-dups-more-points
: this option will filter out duplicate orientations and add more points until it reaches the keypoint budget (if possible).
python detect_sift_keypoints_and_extract_patches.py --force_upright=no-dups-more-points --folder_outp=../benchmark-patches-8k-upright-no-dups
These settings generate about (up to) 8000 features per image, which requires lowering the SIFT detection threshold. If you want fewer features (~2k), you may want to use the default detection threshold, as the results are typically slightly better:
python detect_sift_keypoints_and_extract_patches.py --n_keypoints 2048 --folder_outp=../benchmark-patches-default --lower_sift_threshold=False
python detect_sift_keypoints_and_extract_patches.py --n_keypoints 2048 --force_upright=no-dups-more-points --folder_outp=../benchmark-patches-default-upright-no-dups --lower_sift_threshold=False
After this you can extract features with run_<method>.sh
, or following the instructions below. The shell scripts use reasonable defaults: please refer to each individual wrapper for further settings (upright patches, different NMS, etc).
For HardNet (environment hardnet
):
python extract_descriptors_hardnet.py
For SOSNet (environment hardnet
):
python extract_descriptors_sosnet.py
For L2Net (environment hardnet
):
python extract_descriptors_l2net.py
The Log-Polar Descriptor (environment hardnet
) requires access to the original images. For the log-polar models, use:
python extract_descriptors_logpolar.py --config_file=third_party/log_polar_descriptors/configs/init_one_example_ptn_96.yml --method_name=sift8k_8000_logpolar96
and for the cartesian models, use:
python extract_descriptors_logpolar.py --config_file=third_party/log_polar_descriptors/configs/init_one_example_stn_16.yml --method_name=sift8k_8000_cartesian16
For Geodesc (environment geodesc
):
wget http://home.cse.ust.hk/~zluoag/data/geodesc.pb -O third_party/geodesc/model/geodesc.pb
python extract_descriptors_geodesc.py
Check the files for more options.
Use environment hardnet
. Keypoints are sorted by score and only the top num_kp
are kept. You can extract features with default parameters with the following:
python third_party/superpoint_forked/superpoint.py --cuda --num_kp=2048 --method_name=superpoint_default_2048
You can also lower the detection threshold to extract more features, and resize the images to a fixed size (on the largest dimension), e.g.:
python third_party/superpoint_forked/superpoint.py --cuda --num_kp=8000 --conf_thresh=0.0001 --nms_dist=2 --resize_image_to=1024 --num_kp=8000 --method_name=superpoint_8k_resize1024_nms2
Use environment hardnet
. Following D2-Net's settings, you can generate text lists of the images with:
python generate_image_lists.py
Download the weights (use this set, as the default has some overlap with out test subset):
mkdir third_party/d2net/models
wget https://dsmn.ml/files/d2-net/d2_tf_no_phototourism.pth -O third_party/d2net/models/d2_tf_no_phototourism.pth
You can then extract single-scale D2-Net features with:
python extract_d2net.py --num_kp=8000 --method_name=d2net-default_8000
and multi-scale D2-Net features (add the --cpu
flag if your GPU runs out of memory) with:
python extract_d2net.py --num_kp=8000 --multiscale --method_name=d2net-multiscale_8000
(If the multi-scale variant crashes, please check this.)
Use environment hardnet
and download the model weights:
mkdir third_party/contextdesc/pretrained
wget https://research.altizure.com/data/contextdesc_models/contextdesc_pp.tar -O third_party/contextdesc/pretrained/contextdesc_pp.tar
wget https://research.altizure.com/data/contextdesc_models/retrieval_model.tar -O third_party/contextdesc/pretrained/retrieval_model.tar
tar -C third_party/contextdesc/pretrained/ -xf third_party/contextdesc/pretrained/contextdesc_pp.tar
tar -C third_party/contextdesc/pretrained/ -xf third_party/contextdesc/pretrained/retrieval_model.tar
rm third_party/contextdesc/pretrained/contextdesc_pp.tar
rm third_party/contextdesc/pretrained/retrieval_model.tar
Generate the .yaml
file for ContextDesc:
python generate_yaml.py --num_keypoints=8000
Extract ContextDesc:
python third_party/contextdesc/evaluations.py --config yaml/imw-2020.yaml
You may delete the tmp
folder after extracting the features:
rm -rf ../benchmark-features/tmp_contextdesc
You can install DELF from the tensorflow models repository, following these instructions.
You have to download the model:
mkdir third_party/tensorflow_models/research/delf/delf/python/examples/parameters/
wget http://storage.googleapis.com/delf/delf_gld_20190411.tar.gz -O third_party/tensorflow_models/research/delf/delf/python/examples/parameters/delf_gld_20190411.tar.gz
tar -C third_party/tensorflow_models/research/delf/delf/python/examples/parameters/ -xvf third_party/tensorflow_models/research/delf/delf/python/examples/parameters/delf_gld_20190411.tar.gz
and add the folder third_party/tensorflow_models/research
to $PYTHONPATH. See run_delf.py
for usage.
Use the environment r2d2-python-3.6
(requires 3.6 for f-strings). For options, please see the script. The authors provide three pre-trained models which can be used with:
python extract_r2d2.py --model=third_party/r2d2/models/r2d2_WAF_N16.pt --num_keypoints=8000 --save_path=../benchmark-features/r2d2-waf-n16-8k
python extract_r2d2.py --model=third_party/r2d2/models/r2d2_WASF_N16.pt --num_keypoints=8000 --save_path=../benchmark-features/r2d2-wasf-n16-8k
python extract_r2d2.py --model=third_party/r2d2/models/r2d2_WASF_N8_big.pt --num_keypoints=8000 --save_path=../benchmark-features/r2d2-wasf-n8-big-8k
Matlab-based features are in a separate repository. You can run:
./run_vlfeat_alone.sh
./run_vlfeat_with_affnet_and_hardnet.sh