Skip to content

Latest commit

 

History

History
10 lines (7 loc) · 885 Bytes

README.md

File metadata and controls

10 lines (7 loc) · 885 Bytes

noisy_labels

Twitter followers

TRAINING DEEP NEURAL-NETWORKS USING A NOISE ADAPTATION LAYER ICLR 2017 conference submission

Learning MNIST when almost half the labels are permuted in a fixed way. For example, when the task of labeling is split between two people that don’t agree.

Follow mnist-simple notebook for an example of how to implement the Simple noise adaption layer in the paper with a single customized Keras layer. Follow 161103-run-plot, 161202-run-plot-cifar100 and 161230-run-plot-cifar100-sparse notebooks for how to reproduce the results of the paper.