|
| 1 | +""" |
| 2 | +This code is modified from: |
| 3 | +https://github.com/awslabs/or-rl-benchmarks/blob/master/News%20Vendor/src/news_vendor_environment.py |
| 4 | +""" |
| 5 | + |
| 6 | +import gym |
| 7 | +import numpy as np |
| 8 | +from gym import spaces |
| 9 | +from scipy.stats import poisson |
| 10 | + |
| 11 | + |
| 12 | +class InventoryEnv(gym.Env): |
| 13 | + def __init__(self, config={}): |
| 14 | + self.l = config.get("lead time", 5) |
| 15 | + self.storage_capacity = 4000 |
| 16 | + self.order_limit = 1000 |
| 17 | + self.step_count = 0 |
| 18 | + self.max_steps = 40 |
| 19 | + |
| 20 | + self.max_value = 100.0 |
| 21 | + self.max_holding_cost = 5.0 |
| 22 | + self.max_loss_goodwill = 10.0 |
| 23 | + self.max_mean = 200 |
| 24 | + |
| 25 | + self.inv_dim = max(1, self.l) |
| 26 | + space_low = self.inv_dim * [0] |
| 27 | + space_high = self.inv_dim * [self.storage_capacity] |
| 28 | + space_low += 5 * [0] |
| 29 | + space_high += [ |
| 30 | + self.max_value, |
| 31 | + self.max_value, |
| 32 | + self.max_holding_cost, |
| 33 | + self.max_loss_goodwill, |
| 34 | + self.max_mean, |
| 35 | + ] |
| 36 | + self.observation_space = spaces.Box( |
| 37 | + low=np.array(space_low), |
| 38 | + high=np.array(space_high), |
| 39 | + dtype=np.float32 |
| 40 | + ) |
| 41 | + |
| 42 | + # Action is between 0 and 1, representing order quantity from |
| 43 | + # 0 up to the order limit. |
| 44 | + self.action_space = spaces.Box( |
| 45 | + low=np.array([0]), |
| 46 | + high=np.array([1]), |
| 47 | + dtype=np.float32 |
| 48 | + ) |
| 49 | + self.state = None |
| 50 | + self.reset() |
| 51 | + |
| 52 | + def _normalize_obs(self): |
| 53 | + obs = np.array(self.state) |
| 54 | + obs[:self.inv_dim] = obs[:self.inv_dim] / self.order_limit |
| 55 | + obs[self.inv_dim] = obs[self.inv_dim] / self.max_value |
| 56 | + obs[self.inv_dim + 1] = obs[self.inv_dim + 1] / self.max_value |
| 57 | + obs[self.inv_dim + 2] = obs[self.inv_dim + 2] / self.max_holding_cost |
| 58 | + obs[self.inv_dim + 3] = obs[self.inv_dim + 3] / self.max_loss_goodwill |
| 59 | + obs[self.inv_dim + 4] = obs[self.inv_dim + 4] / self.max_mean |
| 60 | + return obs |
| 61 | + |
| 62 | + def reset(self): |
| 63 | + self.step_count = 0 |
| 64 | + |
| 65 | + price = np.random.rand() * self.max_value |
| 66 | + cost = np.random.rand() * price |
| 67 | + holding_cost = np.random.rand() * min(cost, self.max_holding_cost) |
| 68 | + loss_goodwill = np.random.rand() * self.max_loss_goodwill |
| 69 | + mean_demand = np.random.rand() * self.max_mean |
| 70 | + |
| 71 | + self.state = np.zeros(self.inv_dim + 5) |
| 72 | + self.state[self.inv_dim] = price |
| 73 | + self.state[self.inv_dim + 1] = cost |
| 74 | + self.state[self.inv_dim + 2] = holding_cost |
| 75 | + self.state[self.inv_dim + 3] = loss_goodwill |
| 76 | + self.state[self.inv_dim + 4] = mean_demand |
| 77 | + |
| 78 | + return self._normalize_obs() |
| 79 | + |
| 80 | + def break_state(self): |
| 81 | + inv_state = self.state[: self.inv_dim] |
| 82 | + p = self.state[self.inv_dim] |
| 83 | + c = self.state[self.inv_dim + 1] |
| 84 | + h = self.state[self.inv_dim + 2] |
| 85 | + k = self.state[self.inv_dim + 3] |
| 86 | + mu = self.state[self.inv_dim + 4] |
| 87 | + return inv_state, p, c, h, k, mu |
| 88 | + |
| 89 | + def step(self, action): |
| 90 | + beginning_inv_state, p, c, h, k, mu = \ |
| 91 | + self.break_state() |
| 92 | + action = np.clip(action[0], 0, 1) |
| 93 | + action = int(action * self.order_limit) |
| 94 | + done = False |
| 95 | + |
| 96 | + available_capacity = self.storage_capacity \ |
| 97 | + - np.sum(beginning_inv_state) |
| 98 | + assert available_capacity >= 0 |
| 99 | + buys = min(action, available_capacity) |
| 100 | + # If lead time is zero, immediately |
| 101 | + # increase the inventory |
| 102 | + if self.l == 0: |
| 103 | + self.state[0] += buys |
| 104 | + on_hand = self.state[0] |
| 105 | + demand_realization = np.random.poisson(mu) |
| 106 | + |
| 107 | + # Compute Reward |
| 108 | + sales = min(on_hand, |
| 109 | + demand_realization) |
| 110 | + sales_revenue = p * sales |
| 111 | + overage = on_hand - sales |
| 112 | + underage = max(0, demand_realization |
| 113 | + - on_hand) |
| 114 | + purchase_cost = c * buys |
| 115 | + holding = overage * h |
| 116 | + penalty_lost_sale = k * underage |
| 117 | + reward = sales_revenue \ |
| 118 | + - purchase_cost \ |
| 119 | + - holding \ |
| 120 | + - penalty_lost_sale |
| 121 | + |
| 122 | + # Day is over. Update the inventory |
| 123 | + # levels for the beginning of the next day |
| 124 | + # In-transit inventory levels shift to left |
| 125 | + self.state[0] = 0 |
| 126 | + if self.inv_dim > 1: |
| 127 | + self.state[: self.inv_dim - 1] \ |
| 128 | + = self.state[1: self.inv_dim] |
| 129 | + self.state[0] += overage |
| 130 | + # Add the recently bought inventory |
| 131 | + # if the lead time is positive |
| 132 | + if self.l > 0: |
| 133 | + self.state[self.l - 1] = buys |
| 134 | + self.step_count += 1 |
| 135 | + if self.step_count >= self.max_steps: |
| 136 | + done = True |
| 137 | + |
| 138 | + # Normalize the reward |
| 139 | + reward = reward / 10000 |
| 140 | + info = { |
| 141 | + "demand realization": demand_realization, |
| 142 | + "sales": sales, |
| 143 | + "underage": underage, |
| 144 | + "overage": overage, |
| 145 | + } |
| 146 | + return self._normalize_obs(), reward, done, info |
| 147 | + |
| 148 | + |
| 149 | +def get_action_from_benchmark_policy(env): |
| 150 | + inv_state, p, c, h, k, mu = env.break_state() |
| 151 | + cost_of_overage = h |
| 152 | + cost_of_underage = p - c + k |
| 153 | + critical_ratio = np.clip( |
| 154 | + 0, 1, cost_of_underage |
| 155 | + / (cost_of_underage + cost_of_overage) |
| 156 | + ) |
| 157 | + horizon_target = int(poisson.ppf(critical_ratio, |
| 158 | + (len(inv_state) + 1) * mu)) |
| 159 | + deficit = max(0, horizon_target - np.sum(inv_state)) |
| 160 | + buy_action = min(deficit, env.order_limit) |
| 161 | + return [buy_action / env.order_limit] |
| 162 | + |
| 163 | + |
| 164 | +if __name__ == "__main__": |
| 165 | + np.random.seed(100) |
| 166 | + env = InventoryEnv() |
| 167 | + episode_reward_avgs = [] |
| 168 | + episode_total_rewards = [] |
| 169 | + for i in range(2000): |
| 170 | + print(f"Episode: {i+1}") |
| 171 | + initial_state = env.reset() |
| 172 | + done = False |
| 173 | + ep_rewards = [] |
| 174 | + while not done: |
| 175 | + # action = env.action_space.sample() |
| 176 | + action = get_action_from_benchmark_policy(env) |
| 177 | + # print("Action: ", action) |
| 178 | + state, reward, done, info = env.step(action) |
| 179 | + # print("State: ", state) |
| 180 | + ep_rewards.append(reward) |
| 181 | + total_reward = np.sum(ep_rewards) |
| 182 | + reward_per_day = np.mean(ep_rewards) |
| 183 | + # print(f"Total reward: {total_reward}") |
| 184 | + # print(f"Reward per time step: {reward_per_day}") |
| 185 | + episode_reward_avgs.append(reward_per_day) |
| 186 | + episode_total_rewards.append(total_reward) |
| 187 | + print( |
| 188 | + f"Average daily reward over {len(episode_reward_avgs)} " |
| 189 | + f"test episodes: {np.mean(episode_reward_avgs)}. " |
| 190 | + f"Average total epsisode reward: {np.mean(episode_total_rewards)}" |
| 191 | + ) |
0 commit comments