forked from apple/swift-clang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SemaStmtAsm.cpp
884 lines (766 loc) · 32.7 KB
/
SemaStmtAsm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for inline asm statements.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
using namespace clang;
using namespace sema;
/// Remove the upper-level LValueToRValue cast from an expression.
static void removeLValueToRValueCast(Expr *E) {
Expr *Parent = E;
Expr *ExprUnderCast = nullptr;
SmallVector<Expr *, 8> ParentsToUpdate;
while (true) {
ParentsToUpdate.push_back(Parent);
if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
Parent = ParenE->getSubExpr();
continue;
}
Expr *Child = nullptr;
CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
if (ParentCast)
Child = ParentCast->getSubExpr();
else
return;
if (auto *CastE = dyn_cast<CastExpr>(Child))
if (CastE->getCastKind() == CK_LValueToRValue) {
ExprUnderCast = CastE->getSubExpr();
// LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
ParentCast->setSubExpr(ExprUnderCast);
break;
}
Parent = Child;
}
// Update parent expressions to have same ValueType as the underlying.
assert(ExprUnderCast &&
"Should be reachable only if LValueToRValue cast was found!");
auto ValueKind = ExprUnderCast->getValueKind();
for (Expr *E : ParentsToUpdate)
E->setValueKind(ValueKind);
}
/// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
/// and fix the argument with removing LValueToRValue cast from the expression.
static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
Sema &S) {
if (!S.getLangOpts().HeinousExtensions) {
S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
<< BadArgument->getSourceRange();
} else {
S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
<< BadArgument->getSourceRange();
}
removeLValueToRValueCast(BadArgument);
}
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
/// provide a strong guidance to not use it.
///
/// This method checks to see if the argument is an acceptable l-value and
/// returns false if it is a case we can handle.
static bool CheckAsmLValue(Expr *E, Sema &S) {
// Type dependent expressions will be checked during instantiation.
if (E->isTypeDependent())
return false;
if (E->isLValue())
return false; // Cool, this is an lvalue.
// Okay, this is not an lvalue, but perhaps it is the result of a cast that we
// are supposed to allow.
const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
if (E != E2 && E2->isLValue()) {
emitAndFixInvalidAsmCastLValue(E2, E, S);
// Accept, even if we emitted an error diagnostic.
return false;
}
// None of the above, just randomly invalid non-lvalue.
return true;
}
/// isOperandMentioned - Return true if the specified operand # is mentioned
/// anywhere in the decomposed asm string.
static bool
isOperandMentioned(unsigned OpNo,
ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
if (!Piece.isOperand())
continue;
// If this is a reference to the input and if the input was the smaller
// one, then we have to reject this asm.
if (Piece.getOperandNo() == OpNo)
return true;
}
return false;
}
static bool CheckNakedParmReference(Expr *E, Sema &S) {
FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
if (!Func)
return false;
if (!Func->hasAttr<NakedAttr>())
return false;
SmallVector<Expr*, 4> WorkList;
WorkList.push_back(E);
while (WorkList.size()) {
Expr *E = WorkList.pop_back_val();
if (isa<CXXThisExpr>(E)) {
S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
return true;
}
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (isa<ParmVarDecl>(DRE->getDecl())) {
S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
return true;
}
}
for (Stmt *Child : E->children()) {
if (Expr *E = dyn_cast_or_null<Expr>(Child))
WorkList.push_back(E);
}
}
return false;
}
/// Returns true if given expression is not compatible with inline
/// assembly's memory constraint; false otherwise.
static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
TargetInfo::ConstraintInfo &Info,
bool is_input_expr) {
enum {
ExprBitfield = 0,
ExprVectorElt,
ExprGlobalRegVar,
ExprSafeType
} EType = ExprSafeType;
// Bitfields, vector elements and global register variables are not
// compatible.
if (E->refersToBitField())
EType = ExprBitfield;
else if (E->refersToVectorElement())
EType = ExprVectorElt;
else if (E->refersToGlobalRegisterVar())
EType = ExprGlobalRegVar;
if (EType != ExprSafeType) {
S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
<< EType << is_input_expr << Info.getConstraintStr()
<< E->getSourceRange();
return true;
}
return false;
}
// Extracting the register name from the Expression value,
// if there is no register name to extract, returns ""
static StringRef extractRegisterName(const Expr *Expression,
const TargetInfo &Target) {
Expression = Expression->IgnoreImpCasts();
if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
// Handle cases where the expression is a variable
const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
if (Variable && Variable->getStorageClass() == SC_Register) {
if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
if (Target.isValidGCCRegisterName(Attr->getLabel()))
return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
}
}
return "";
}
// Checks if there is a conflict between the input and output lists with the
// clobbers list. If there's a conflict, returns the location of the
// conflicted clobber, else returns nullptr
static SourceLocation
getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
StringLiteral **Clobbers, int NumClobbers,
const TargetInfo &Target, ASTContext &Cont) {
llvm::StringSet<> InOutVars;
// Collect all the input and output registers from the extended asm
// statement in order to check for conflicts with the clobber list
for (unsigned int i = 0; i < Exprs.size(); ++i) {
StringRef Constraint = Constraints[i]->getString();
StringRef InOutReg = Target.getConstraintRegister(
Constraint, extractRegisterName(Exprs[i], Target));
if (InOutReg != "")
InOutVars.insert(InOutReg);
}
// Check for each item in the clobber list if it conflicts with the input
// or output
for (int i = 0; i < NumClobbers; ++i) {
StringRef Clobber = Clobbers[i]->getString();
// We only check registers, therefore we don't check cc and memory
// clobbers
if (Clobber == "cc" || Clobber == "memory")
continue;
Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
// Go over the output's registers we collected
if (InOutVars.count(Clobber))
return Clobbers[i]->getBeginLoc();
}
return SourceLocation();
}
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg constraints, MultiExprArg Exprs,
Expr *asmString, MultiExprArg clobbers,
SourceLocation RParenLoc) {
unsigned NumClobbers = clobbers.size();
StringLiteral **Constraints =
reinterpret_cast<StringLiteral**>(constraints.data());
StringLiteral *AsmString = cast<StringLiteral>(asmString);
StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
// The parser verifies that there is a string literal here.
assert(AsmString->isAscii());
// If we're compiling CUDA file and function attributes indicate that it's not
// for this compilation side, skip all the checks.
if (!DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) {
GCCAsmStmt *NS = new (Context) GCCAsmStmt(
Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names,
Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, RParenLoc);
return NS;
}
for (unsigned i = 0; i != NumOutputs; i++) {
StringLiteral *Literal = Constraints[i];
assert(Literal->isAscii());
StringRef OutputName;
if (Names[i])
OutputName = Names[i]->getName();
TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
if (!Context.getTargetInfo().validateOutputConstraint(Info))
return StmtError(
Diag(Literal->getBeginLoc(), diag::err_asm_invalid_output_constraint)
<< Info.getConstraintStr());
ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
if (ER.isInvalid())
return StmtError();
Exprs[i] = ER.get();
// Check that the output exprs are valid lvalues.
Expr *OutputExpr = Exprs[i];
// Referring to parameters is not allowed in naked functions.
if (CheckNakedParmReference(OutputExpr, *this))
return StmtError();
// Check that the output expression is compatible with memory constraint.
if (Info.allowsMemory() &&
checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
return StmtError();
OutputConstraintInfos.push_back(Info);
// If this is dependent, just continue.
if (OutputExpr->isTypeDependent())
continue;
Expr::isModifiableLvalueResult IsLV =
OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
switch (IsLV) {
case Expr::MLV_Valid:
// Cool, this is an lvalue.
break;
case Expr::MLV_ArrayType:
// This is OK too.
break;
case Expr::MLV_LValueCast: {
const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
// Accept, even if we emitted an error diagnostic.
break;
}
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
diag::err_dereference_incomplete_type))
return StmtError();
LLVM_FALLTHROUGH;
default:
return StmtError(Diag(OutputExpr->getBeginLoc(),
diag::err_asm_invalid_lvalue_in_output)
<< OutputExpr->getSourceRange());
}
unsigned Size = Context.getTypeSize(OutputExpr->getType());
if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
Size))
return StmtError(
Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
<< Info.getConstraintStr());
}
SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
StringLiteral *Literal = Constraints[i];
assert(Literal->isAscii());
StringRef InputName;
if (Names[i])
InputName = Names[i]->getName();
TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
Info)) {
return StmtError(
Diag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
<< Info.getConstraintStr());
}
ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
if (ER.isInvalid())
return StmtError();
Exprs[i] = ER.get();
Expr *InputExpr = Exprs[i];
// Referring to parameters is not allowed in naked functions.
if (CheckNakedParmReference(InputExpr, *this))
return StmtError();
// Check that the input expression is compatible with memory constraint.
if (Info.allowsMemory() &&
checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
return StmtError();
// Only allow void types for memory constraints.
if (Info.allowsMemory() && !Info.allowsRegister()) {
if (CheckAsmLValue(InputExpr, *this))
return StmtError(Diag(InputExpr->getBeginLoc(),
diag::err_asm_invalid_lvalue_in_input)
<< Info.getConstraintStr()
<< InputExpr->getSourceRange());
} else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
if (!InputExpr->isValueDependent()) {
Expr::EvalResult EVResult;
if (!InputExpr->EvaluateAsRValue(EVResult, Context, true))
return StmtError(
Diag(InputExpr->getBeginLoc(), diag::err_asm_immediate_expected)
<< Info.getConstraintStr() << InputExpr->getSourceRange());
llvm::APSInt Result = EVResult.Val.getInt();
if (!Info.isValidAsmImmediate(Result))
return StmtError(Diag(InputExpr->getBeginLoc(),
diag::err_invalid_asm_value_for_constraint)
<< Result.toString(10) << Info.getConstraintStr()
<< InputExpr->getSourceRange());
}
} else {
ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
if (Result.isInvalid())
return StmtError();
Exprs[i] = Result.get();
}
if (Info.allowsRegister()) {
if (InputExpr->getType()->isVoidType()) {
return StmtError(
Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
<< InputExpr->getType() << Info.getConstraintStr()
<< InputExpr->getSourceRange());
}
}
InputConstraintInfos.push_back(Info);
const Type *Ty = Exprs[i]->getType().getTypePtr();
if (Ty->isDependentType())
continue;
if (!Ty->isVoidType() || !Info.allowsMemory())
if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
diag::err_dereference_incomplete_type))
return StmtError();
unsigned Size = Context.getTypeSize(Ty);
if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
Size))
return StmtError(
Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size)
<< Info.getConstraintStr());
}
// Check that the clobbers are valid.
for (unsigned i = 0; i != NumClobbers; i++) {
StringLiteral *Literal = Clobbers[i];
assert(Literal->isAscii());
StringRef Clobber = Literal->getString();
if (!Context.getTargetInfo().isValidClobber(Clobber))
return StmtError(
Diag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
<< Clobber);
}
GCCAsmStmt *NS =
new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
NumInputs, Names, Constraints, Exprs.data(),
AsmString, NumClobbers, Clobbers, RParenLoc);
// Validate the asm string, ensuring it makes sense given the operands we
// have.
SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
unsigned DiagOffs;
if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
<< AsmString->getSourceRange();
return StmtError();
}
// Validate constraints and modifiers.
for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
if (!Piece.isOperand()) continue;
// Look for the correct constraint index.
unsigned ConstraintIdx = Piece.getOperandNo();
unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
// Look for the (ConstraintIdx - NumOperands + 1)th constraint with
// modifier '+'.
if (ConstraintIdx >= NumOperands) {
unsigned I = 0, E = NS->getNumOutputs();
for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
ConstraintIdx = I;
break;
}
assert(I != E && "Invalid operand number should have been caught in "
" AnalyzeAsmString");
}
// Now that we have the right indexes go ahead and check.
StringLiteral *Literal = Constraints[ConstraintIdx];
const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
if (Ty->isDependentType() || Ty->isIncompleteType())
continue;
unsigned Size = Context.getTypeSize(Ty);
std::string SuggestedModifier;
if (!Context.getTargetInfo().validateConstraintModifier(
Literal->getString(), Piece.getModifier(), Size,
SuggestedModifier)) {
Diag(Exprs[ConstraintIdx]->getBeginLoc(),
diag::warn_asm_mismatched_size_modifier);
if (!SuggestedModifier.empty()) {
auto B = Diag(Piece.getRange().getBegin(),
diag::note_asm_missing_constraint_modifier)
<< SuggestedModifier;
SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
SuggestedModifier));
}
}
}
// Validate tied input operands for type mismatches.
unsigned NumAlternatives = ~0U;
for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
StringRef ConstraintStr = Info.getConstraintStr();
unsigned AltCount = ConstraintStr.count(',') + 1;
if (NumAlternatives == ~0U)
NumAlternatives = AltCount;
else if (NumAlternatives != AltCount)
return StmtError(Diag(NS->getOutputExpr(i)->getBeginLoc(),
diag::err_asm_unexpected_constraint_alternatives)
<< NumAlternatives << AltCount);
}
SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
~0U);
for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
StringRef ConstraintStr = Info.getConstraintStr();
unsigned AltCount = ConstraintStr.count(',') + 1;
if (NumAlternatives == ~0U)
NumAlternatives = AltCount;
else if (NumAlternatives != AltCount)
return StmtError(Diag(NS->getInputExpr(i)->getBeginLoc(),
diag::err_asm_unexpected_constraint_alternatives)
<< NumAlternatives << AltCount);
// If this is a tied constraint, verify that the output and input have
// either exactly the same type, or that they are int/ptr operands with the
// same size (int/long, int*/long, are ok etc).
if (!Info.hasTiedOperand()) continue;
unsigned TiedTo = Info.getTiedOperand();
unsigned InputOpNo = i+NumOutputs;
Expr *OutputExpr = Exprs[TiedTo];
Expr *InputExpr = Exprs[InputOpNo];
// Make sure no more than one input constraint matches each output.
assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
if (InputMatchedToOutput[TiedTo] != ~0U) {
Diag(NS->getInputExpr(i)->getBeginLoc(),
diag::err_asm_input_duplicate_match)
<< TiedTo;
Diag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
diag::note_asm_input_duplicate_first)
<< TiedTo;
return StmtError();
}
InputMatchedToOutput[TiedTo] = i;
if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
continue;
QualType InTy = InputExpr->getType();
QualType OutTy = OutputExpr->getType();
if (Context.hasSameType(InTy, OutTy))
continue; // All types can be tied to themselves.
// Decide if the input and output are in the same domain (integer/ptr or
// floating point.
enum AsmDomain {
AD_Int, AD_FP, AD_Other
} InputDomain, OutputDomain;
if (InTy->isIntegerType() || InTy->isPointerType())
InputDomain = AD_Int;
else if (InTy->isRealFloatingType())
InputDomain = AD_FP;
else
InputDomain = AD_Other;
if (OutTy->isIntegerType() || OutTy->isPointerType())
OutputDomain = AD_Int;
else if (OutTy->isRealFloatingType())
OutputDomain = AD_FP;
else
OutputDomain = AD_Other;
// They are ok if they are the same size and in the same domain. This
// allows tying things like:
// void* to int*
// void* to int if they are the same size.
// double to long double if they are the same size.
//
uint64_t OutSize = Context.getTypeSize(OutTy);
uint64_t InSize = Context.getTypeSize(InTy);
if (OutSize == InSize && InputDomain == OutputDomain &&
InputDomain != AD_Other)
continue;
// If the smaller input/output operand is not mentioned in the asm string,
// then we can promote the smaller one to a larger input and the asm string
// won't notice.
bool SmallerValueMentioned = false;
// If this is a reference to the input and if the input was the smaller
// one, then we have to reject this asm.
if (isOperandMentioned(InputOpNo, Pieces)) {
// This is a use in the asm string of the smaller operand. Since we
// codegen this by promoting to a wider value, the asm will get printed
// "wrong".
SmallerValueMentioned |= InSize < OutSize;
}
if (isOperandMentioned(TiedTo, Pieces)) {
// If this is a reference to the output, and if the output is the larger
// value, then it's ok because we'll promote the input to the larger type.
SmallerValueMentioned |= OutSize < InSize;
}
// If the smaller value wasn't mentioned in the asm string, and if the
// output was a register, just extend the shorter one to the size of the
// larger one.
if (!SmallerValueMentioned && InputDomain != AD_Other &&
OutputConstraintInfos[TiedTo].allowsRegister())
continue;
// Either both of the operands were mentioned or the smaller one was
// mentioned. One more special case that we'll allow: if the tied input is
// integer, unmentioned, and is a constant, then we'll allow truncating it
// down to the size of the destination.
if (InputDomain == AD_Int && OutputDomain == AD_Int &&
!isOperandMentioned(InputOpNo, Pieces) &&
InputExpr->isEvaluatable(Context)) {
CastKind castKind =
(OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
Exprs[InputOpNo] = InputExpr;
NS->setInputExpr(i, InputExpr);
continue;
}
Diag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
<< InTy << OutTy << OutputExpr->getSourceRange()
<< InputExpr->getSourceRange();
return StmtError();
}
// Check for conflicts between clobber list and input or output lists
SourceLocation ConstraintLoc =
getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
Context.getTargetInfo(), Context);
if (ConstraintLoc.isValid())
return Diag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
return NS;
}
void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
llvm::InlineAsmIdentifierInfo &Info) {
QualType T = Res->getType();
Expr::EvalResult Eval;
if (T->isFunctionType() || T->isDependentType())
return Info.setLabel(Res);
if (Res->isRValue()) {
if (isa<clang::EnumType>(T) && Res->EvaluateAsRValue(Eval, Context))
return Info.setEnum(Eval.Val.getInt().getSExtValue());
return Info.setLabel(Res);
}
unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
unsigned Type = Size;
if (const auto *ATy = Context.getAsArrayType(T))
Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
bool IsGlobalLV = false;
if (Res->EvaluateAsLValue(Eval, Context))
IsGlobalLV = Eval.isGlobalLValue();
Info.setVar(Res, IsGlobalLV, Size, Type);
}
ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Id,
bool IsUnevaluatedContext) {
if (IsUnevaluatedContext)
PushExpressionEvaluationContext(
ExpressionEvaluationContext::UnevaluatedAbstract,
ReuseLambdaContextDecl);
ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
/*trailing lparen*/ false,
/*is & operand*/ false,
/*CorrectionCandidateCallback=*/nullptr,
/*IsInlineAsmIdentifier=*/ true);
if (IsUnevaluatedContext)
PopExpressionEvaluationContext();
if (!Result.isUsable()) return Result;
Result = CheckPlaceholderExpr(Result.get());
if (!Result.isUsable()) return Result;
// Referring to parameters is not allowed in naked functions.
if (CheckNakedParmReference(Result.get(), *this))
return ExprError();
QualType T = Result.get()->getType();
if (T->isDependentType()) {
return Result;
}
// Any sort of function type is fine.
if (T->isFunctionType()) {
return Result;
}
// Otherwise, it needs to be a complete type.
if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
return ExprError();
}
return Result;
}
bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
unsigned &Offset, SourceLocation AsmLoc) {
Offset = 0;
SmallVector<StringRef, 2> Members;
Member.split(Members, ".");
NamedDecl *FoundDecl = nullptr;
// MS InlineAsm uses 'this' as a base
if (getLangOpts().CPlusPlus && Base.equals("this")) {
if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
FoundDecl = PT->getPointeeType()->getAsTagDecl();
} else {
LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
LookupOrdinaryName);
if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
FoundDecl = BaseResult.getFoundDecl();
}
if (!FoundDecl)
return true;
for (StringRef NextMember : Members) {
const RecordType *RT = nullptr;
if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
RT = VD->getType()->getAs<RecordType>();
else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
// MS InlineAsm often uses struct pointer aliases as a base
QualType QT = TD->getUnderlyingType();
if (const auto *PT = QT->getAs<PointerType>())
QT = PT->getPointeeType();
RT = QT->getAs<RecordType>();
} else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
RT = TD->getTypeForDecl()->getAs<RecordType>();
else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
RT = TD->getType()->getAs<RecordType>();
if (!RT)
return true;
if (RequireCompleteType(AsmLoc, QualType(RT, 0),
diag::err_asm_incomplete_type))
return true;
LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
SourceLocation(), LookupMemberName);
if (!LookupQualifiedName(FieldResult, RT->getDecl()))
return true;
if (!FieldResult.isSingleResult())
return true;
FoundDecl = FieldResult.getFoundDecl();
// FIXME: Handle IndirectFieldDecl?
FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
if (!FD)
return true;
const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
unsigned i = FD->getFieldIndex();
CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
Offset += (unsigned)Result.getQuantity();
}
return false;
}
ExprResult
Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
SourceLocation AsmLoc) {
QualType T = E->getType();
if (T->isDependentType()) {
DeclarationNameInfo NameInfo;
NameInfo.setLoc(AsmLoc);
NameInfo.setName(&Context.Idents.get(Member));
return CXXDependentScopeMemberExpr::Create(
Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
SourceLocation(),
/*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
}
const RecordType *RT = T->getAs<RecordType>();
// FIXME: Diagnose this as field access into a scalar type.
if (!RT)
return ExprResult();
LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
LookupMemberName);
if (!LookupQualifiedName(FieldResult, RT->getDecl()))
return ExprResult();
// Only normal and indirect field results will work.
ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
if (!FD)
FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
if (!FD)
return ExprResult();
// Make an Expr to thread through OpDecl.
ExprResult Result = BuildMemberReferenceExpr(
E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
return Result;
}
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks,
StringRef AsmString,
unsigned NumOutputs, unsigned NumInputs,
ArrayRef<StringRef> Constraints,
ArrayRef<StringRef> Clobbers,
ArrayRef<Expr*> Exprs,
SourceLocation EndLoc) {
bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
setFunctionHasBranchProtectedScope();
MSAsmStmt *NS =
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
/*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
Constraints, Exprs, AsmString,
Clobbers, EndLoc);
return NS;
}
LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
SourceLocation Location,
bool AlwaysCreate) {
LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
Location);
if (Label->isMSAsmLabel()) {
// If we have previously created this label implicitly, mark it as used.
Label->markUsed(Context);
} else {
// Otherwise, insert it, but only resolve it if we have seen the label itself.
std::string InternalName;
llvm::raw_string_ostream OS(InternalName);
// Create an internal name for the label. The name should not be a valid
// mangled name, and should be unique. We use a dot to make the name an
// invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
// unique label is generated each time this blob is emitted, even after
// inlining or LTO.
OS << "__MSASMLABEL_.${:uid}__";
for (char C : ExternalLabelName) {
OS << C;
// We escape '$' in asm strings by replacing it with "$$"
if (C == '$')
OS << '$';
}
Label->setMSAsmLabel(OS.str());
}
if (AlwaysCreate) {
// The label might have been created implicitly from a previously encountered
// goto statement. So, for both newly created and looked up labels, we mark
// them as resolved.
Label->setMSAsmLabelResolved();
}
// Adjust their location for being able to generate accurate diagnostics.
Label->setLocation(Location);
return Label;
}