forked from Chia-Network/chiapos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphase2.hpp
275 lines (225 loc) · 10.9 KB
/
phase2.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2018 Chia Network Inc
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_CPP_PHASE2_HPP_
#define SRC_CPP_PHASE2_HPP_
#include "disk.hpp"
#include "entry_sizes.hpp"
#include "sort_manager.hpp"
#include "bitfield.hpp"
#include "bitfield_index.hpp"
#include "progress.hpp"
struct Phase2Results
{
Disk& disk_for_table(int const table_index)
{
if (table_index == 1) return table1;
else if (table_index == 7) return table7;
else return *output_files[table_index - 2];
}
FilteredDisk table1;
BufferedDisk table7;
std::vector<std::unique_ptr<SortManager>> output_files;
std::vector<uint64_t> table_sizes;
};
// Backpropagate takes in as input, a file on which forward propagation has been done.
// The purpose of backpropagate is to eliminate any dead entries that don't contribute
// to final values in f7, to minimize disk usage. A sort on disk is applied to each table,
// so that they are sorted by position.
Phase2Results RunPhase2(
std::vector<FileDisk> &tmp_1_disks,
std::vector<uint64_t> table_sizes,
uint8_t const k,
const uint8_t *id,
const std::string &tmp_dirname,
const std::string &filename,
uint64_t memory_size,
uint32_t const num_buckets,
uint32_t const log_num_buckets,
bool const show_progress)
{
// After pruning each table will have 0.865 * 2^k or fewer entries on
// average
uint8_t const pos_size = k;
uint8_t const pos_offset_size = pos_size + kOffsetSize;
uint8_t const write_counter_shift = 128 - k;
uint8_t const pos_offset_shift = write_counter_shift - pos_offset_size;
uint8_t const f7_shift = 128 - k;
uint8_t const t7_pos_offset_shift = f7_shift - pos_offset_size;
uint8_t const new_entry_size = EntrySizes::GetKeyPosOffsetSize(k);
std::vector<uint64_t> new_table_sizes(8, 0);
new_table_sizes[7] = table_sizes[7];
// Iterates through each table, starting at 6 & 7. Each iteration, we scan
// the current table twice. In the first scan, we:
// 1. drop entries marked as false in the current bitfield (except table 7,
// where we don't drop anything, this is a special case)
// 2. mark entries in the next_bitfield that non-dropped entries have
// references to
// The second scan of the table, we update the positions and offsets to
// reflect the entries that will be dropped in the next table.
// At the end of the iteration, we transfer the next_bitfield to the current bitfield
// to use it to prune the next table to scan.
int64_t const max_table_size = *std::max_element(table_sizes.begin()
, table_sizes.end());
bitfield next_bitfield(max_table_size);
bitfield current_bitfield(max_table_size);
std::vector<std::unique_ptr<SortManager>> output_files;
// table 1 and 7 are special. They are passed on as plain files on disk.
// Only table 2-6 are passed on as SortManagers, to phase3
output_files.resize(7 - 2);
// note that we don't iterate over table_index=1. That table is special
// since it contains different data. We'll do an extra scan of table 1 at
// the end, just to compact it.
for (int table_index = 7; table_index > 1; --table_index) {
std::cout << "Backpropagating on table " << table_index << std::endl;
Timer scan_timer;
next_bitfield.clear();
int64_t const table_size = table_sizes[table_index];
int16_t const entry_size = cdiv(k + kOffsetSize + (table_index == 7 ? k : 0), 8);
BufferedDisk disk(&tmp_1_disks[table_index], table_size * entry_size);
// read_index is the number of entries we've processed so far (in the
// current table) i.e. the index to the current entry. This is not used
// for table 7
int64_t read_cursor = 0;
for (int64_t read_index = 0; read_index < table_size; ++read_index, read_cursor += entry_size)
{
uint8_t const* entry = disk.Read(read_cursor, entry_size);
uint64_t entry_pos_offset = 0;
if (table_index == 7) {
// table 7 is special, we never drop anything, so just build
// next_bitfield
entry_pos_offset = Util::SliceInt64FromBytes(entry, k, pos_offset_size);
} else {
if (!current_bitfield.get(read_index))
{
// This entry should be dropped.
continue;
}
entry_pos_offset = Util::SliceInt64FromBytes(entry, 0, pos_offset_size);
}
uint64_t entry_pos = entry_pos_offset >> kOffsetSize;
uint64_t entry_offset = entry_pos_offset & ((1U << kOffsetSize) - 1);
// mark the two matching entries as used (pos and pos+offset)
next_bitfield.set(entry_pos);
next_bitfield.set(entry_pos + entry_offset);
}
std::cout << "scanned table " << table_index << std::endl;
scan_timer.PrintElapsed("scanned time = ");
std::cout << "sorting table " << table_index << std::endl;
Timer sort_timer;
// read the same table again. This time we'll output it to new files:
// * add sort_key (just the index of the current entry)
// * update (pos, offset) to remain valid after table_index-1 has been
// compacted.
// * sort by pos
//
// As we have to sort two adjacent tables at the same time in phase 3,
// we can use only a half of memory_size for SortManager. However,
// table 1 is already sorted, so we can use all memory for sorting
// table 2.
auto sort_manager = std::make_unique<SortManager>(
table_index == 2 ? memory_size : memory_size / 2,
num_buckets,
log_num_buckets,
new_entry_size,
tmp_dirname,
filename + ".p2.t" + std::to_string(table_index),
uint32_t(k),
0,
strategy_t::quicksort_last);
// as we scan the table for the second time, we'll also need to remap
// the positions and offsets based on the next_bitfield.
bitfield_index const index(next_bitfield);
read_cursor = 0;
int64_t write_counter = 0;
for (int64_t read_index = 0; read_index < table_size; ++read_index, read_cursor += entry_size)
{
uint8_t const* entry = disk.Read(read_cursor, entry_size);
uint64_t entry_f7 = 0;
uint64_t entry_pos_offset;
if (table_index == 7) {
// table 7 is special, we never drop anything, so just build
// next_bitfield
entry_f7 = Util::SliceInt64FromBytes(entry, 0, k);
entry_pos_offset = Util::SliceInt64FromBytes(entry, k, pos_offset_size);
} else {
// skipping
if (!current_bitfield.get(read_index)) continue;
entry_pos_offset = Util::SliceInt64FromBytes(entry, 0, pos_offset_size);
}
uint64_t entry_pos = entry_pos_offset >> kOffsetSize;
uint64_t entry_offset = entry_pos_offset & ((1U << kOffsetSize) - 1);
// assemble the new entry and write it to the sort manager
// map the pos and offset to the new, compacted, positions and
// offsets
std::tie(entry_pos, entry_offset) = index.lookup(entry_pos, entry_offset);
entry_pos_offset = (entry_pos << kOffsetSize) | entry_offset;
uint8_t bytes[16];
if (table_index == 7) {
// table 7 is already sorted by pos, so we just rewrite the
// pos and offset in-place
uint128_t new_entry = (uint128_t)entry_f7 << f7_shift;
new_entry |= (uint128_t)entry_pos_offset << t7_pos_offset_shift;
Util::IntTo16Bytes(bytes, new_entry);
disk.Write(read_index * entry_size, bytes, entry_size);
}
else {
// The new entry is slightly different. Metadata is dropped, to
// save space, and the counter of the entry is written (sort_key). We
// use this instead of (y + pos + offset) since its smaller.
uint128_t new_entry = (uint128_t)write_counter << write_counter_shift;
new_entry |= (uint128_t)entry_pos_offset << pos_offset_shift;
Util::IntTo16Bytes(bytes, new_entry);
sort_manager->AddToCache(bytes);
}
++write_counter;
}
if (table_index != 7) {
sort_manager->FlushCache();
sort_timer.PrintElapsed("sort time = ");
// clear disk caches
disk.FreeMemory();
sort_manager->FreeMemory();
output_files[table_index - 2] = std::move(sort_manager);
new_table_sizes[table_index] = write_counter;
}
current_bitfield.swap(next_bitfield);
next_bitfield.clear();
// The files for Table 1 and 7 are re-used, overwritten and passed on to
// the next phase. However, table 2 through 6 are all written to sort
// managers that are passed on to the next phase. At this point, we have
// to delete the input files for table 2-6 to save disk space.
// This loop doesn't cover table 1, it's handled below with the
// FilteredDisk wrapper.
if (table_index != 7) {
tmp_1_disks[table_index].Truncate(0);
}
if (show_progress) {
progress(2, 8 - table_index, 6);
}
}
// lazy-compact table 1 based on current_bitfield
int const table_index = 1;
int64_t const table_size = table_sizes[table_index];
int16_t const entry_size = EntrySizes::GetMaxEntrySize(k, table_index, false);
// at this point, table 1 still needs to be compacted, based on
// current_bitfield. Instead of compacting it right now, defer it and read
// from it as-if it was compacted. This saves one read and one write pass
new_table_sizes[table_index] = current_bitfield.count(0, table_size);
BufferedDisk disk(&tmp_1_disks[table_index], table_size * entry_size);
std::cout << "table " << table_index << " new size: " << new_table_sizes[table_index] << std::endl;
return {
FilteredDisk(std::move(disk), std::move(current_bitfield), entry_size)
, BufferedDisk(&tmp_1_disks[7], new_table_sizes[7] * new_entry_size)
, std::move(output_files)
, std::move(new_table_sizes)
};
}
#endif // SRC_CPP_PHASE2_HPP