forked from raspberrypi/pico-tflmicro
-
Notifications
You must be signed in to change notification settings - Fork 1
/
system_setup.cpp
67 lines (58 loc) · 2.98 KB
/
system_setup.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Reference implementation of the DebugLog() function that's required for a
// platform to support the TensorFlow Lite for Microcontrollers library. This is
// the only function that's absolutely required to be available on a target
// device, since it's used for communicating test results back to the host so
// that we can verify the implementation is working correctly.
// It's designed to be as easy as possible to supply an implementation though.
// On platforms that have a POSIX stack or C library, it can be written as a
// single call to `fprintf(stderr, "%s", s)` to output a string to the error
// stream of the console, but if there's no OS or C library available, there's
// almost always an equivalent way to write out a string to some serial
// interface that can be used instead. For example on Arm M-series MCUs, calling
// the `bkpt #0xAB` assembler instruction will output the string in r1 to
// whatever debug serial connection is available. If you're running mbed, you
// can do the same by creating `Serial pc(USBTX, USBRX)` and then calling
// `pc.printf("%s", s)`.
// To add an equivalent function for your own platform, create your own
// implementation file, and place it in a subfolder with named after the OS
// you're targeting. For example, see the Cortex M bare metal version in
// tensorflow/lite/micro/bluepill/debug_log.cc or the mbed one on
// tensorflow/lite/micro/mbed/debug_log.cc.
#include "tensorflow/lite/micro/debug_log.h"
#ifndef TF_LITE_STRIP_ERROR_STRINGS
#include <stdio.h>
#include "pico/stdlib.h"
#endif // TF_LITE_STRIP_ERROR_STRINGS
namespace tflite {
void InitializeTarget() {
#ifndef TF_LITE_STRIP_ERROR_STRINGS
stdio_init_all();
#endif // TF_LITE_STRIP_ERROR_STRINGS
}
} // namespace tflite
extern "C" void DebugLog(const char* format, va_list args) {
#ifndef TF_LITE_STRIP_ERROR_STRINGS
// Reusing TF_LITE_STRIP_ERROR_STRINGS to disable DebugLog completely to get
// maximum reduction in binary size. This is because we have DebugLog calls
// via TF_LITE_CHECK that are not stubbed out by TF_LITE_REPORT_ERROR.
vfprintf(stderr, format, args);
#endif
}
#ifndef TF_LITE_STRIP_ERROR_STRINGS
// Only called from MicroVsnprintf (micro_log.h)
int DebugVsnprintf(char* buffer, size_t buf_size, const char* format,
va_list vlist) {
return vsnprintf(buffer, buf_size, format, vlist);
}
#endif