forked from OpenCSGs/llm-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext-generation--bigscience--bloom-560m.yaml
52 lines (52 loc) · 1.69 KB
/
text-generation--bigscience--bloom-560m.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
deployment_config:
autoscaling_config:
min_replicas: 1
initial_replicas: 1
max_replicas: 8
target_num_ongoing_requests_per_replica: 1.0
metrics_interval_s: 10.0
look_back_period_s: 30.0
smoothing_factor: 1.0
downscale_delay_s: 300.0
upscale_delay_s: 90.0
ray_actor_options:
num_cpus: 0.1 # for a model deployment, we have 3 actor created, 1 and 2 will cost 0.1 cpu, and the model infrence will cost 6(see the setting in the end of the file)
model_config:
warmup: True
model_task: text-generation
model_id: bigscience/bloom-560m
max_input_words: 800
initialization:
# s3_mirror_config:
# bucket_uri: s3://large-dl-models-mirror/models--amazon--LightGPT/main-safetensors/
initializer:
type: SingleDevice
dtype: float32
from_pretrained_kwargs:
use_cache: true
trust_remote_code: true
# use_kernel: true # for deepspped type only
# max_tokens: 1536 # for deepspped type only
# pipeline: defaulttransformers
pipeline: default
generation:
max_batch_size: 2
batch_wait_timeout_s: 30
generate_kwargs:
do_sample: false
max_new_tokens: 512
min_new_tokens: 16
temperature: 0.7
repetition_penalty: 1.1
top_p: 0.8
top_k: 50
# prompt_format: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\n{instruction}\n### Response:\n"
stopping_sequences: ["### Response:", "### End"]
scaling_config:
num_workers: 1
num_gpus_per_worker: 0
num_cpus_per_worker: 3 # for infrence
# resources_per_worker:
# accelerator_type_cpu: 0.01
ray_actor_options:
num_cpus: 0.1