forked from OpenCSGs/llm-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext-generation--llama-7b-GGUF.yaml
49 lines (48 loc) · 1.57 KB
/
text-generation--llama-7b-GGUF.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
deployment_config:
autoscaling_config:
min_replicas: 0
initial_replicas: 1
max_replicas: 8
target_num_ongoing_requests_per_replica: 1.0
metrics_interval_s: 10.0
look_back_period_s: 30.0
smoothing_factor: 1.0
downscale_delay_s: 300.0
upscale_delay_s: 90.0
ray_actor_options:
num_cpus: 0.1 # for a model deployment, we have 3 actor created, 1 and 2 will cost 0.1 cpu, and the model infrence will cost 6(see the setting in the end of the file)
model_config:
warmup: True
model_task: text-generation
model_id: TheBloke/Llama-2-7B-GGUF
max_input_words: 800
initialization:
# s3_mirror_config:
# endpoint_url: http://39.107.108.170:9000
# bucket_uri: /Users/hub/models/llama-2-7b-gguf/
initializer:
type: LlamaCpp
model_filename: llama-2-7b.Q5_K_S.gguf
model_init_kwargs:
test: true
# use_kernel: true # for deepspped type only
# max_tokens: 1536 # for deepspped type only
# pipeline: defaulttransformers
# pipeline: default
pipeline: llamacpp
generation:
max_batch_size: 2
batch_wait_timeout_s: 0
generate_kwargs:
# do_sample: true
max_tokens: 128
temperature: 0.7
top_p: 0.8
top_k: 50
echo: false
# prompt_format: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\n{instruction}\n### Response:\n"
stopping_sequences: ["### Response:", "### End"]
scaling_config:
num_workers: 1
num_gpus_per_worker: 0
num_cpus_per_worker: 8 # for inference