Skip to content

Latest commit

 

History

History
104 lines (78 loc) · 3.72 KB

README.md

File metadata and controls

104 lines (78 loc) · 3.72 KB

第十章作业

基于图优化的滑动窗模型包含:

  • 地图匹配位姿和优化变量的残差
  • 激光里程计相对位姿和优化变量的残差
  • IMU预积分和优化变量的残差
  • 边缘化形成的先验因子对应的残差

所以首先需要推导各残差关于优化变量的雅可比

1. 推导各残差关于优化变量的雅可比

地图匹配位姿

  • Residual

    e_p

    e_lie

  • Jacobian

    J_dep_dt

激光里程计相对位姿

  • Residual

    $$ e_p = R_i^T(t_j-t_i) - t_{obs} $$

    $$ e_{lie} = ln(R_{ij_obs}^T\cdot(R_i^T\cdot R_j))^{\vee} $$

  • Jacobian

    $$ \begin{aligned} \frac{\partial e_p}{\partial{t_i}} = -R_i^T \end{aligned} $$

    $$ \frac{\partial{e_p}}{\partial{t_j}} = R_i^T $$

    $$ \begin{aligned} \frac{\partial{e_{lie}}}{\partial{R_i}} = \end{aligned} $$

    $$ \begin{aligned} \frac{\partial{e_{lie}}}{\partial{R_j}} = \end{aligned} $$

IMU预积分

边缘化形成的先验因子

2. 基于图优化的定位

作业是参考了葛垚大佬的推导,先完成了代码补全,运行起来看了一下效果

running1 running2

Optimized LidarOdometry
Map map raw
APE Optimized LidarOdometry
max 8.442891 7.678134
mean 4.747836 4.170015
median 4.815285 4.252581
min 0.000002 0.000002
rmse 5.008378 4.514122
sse 113554.602350 92248.011402
std 1.594337 1.728660