-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKeras2pb.py
33 lines (24 loc) · 1.3 KB
/
Keras2pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import tensorflow as tf
from tensorflow.python.framework import graph_io
from tensorflow.keras.models import load_model
import argparse
# Clear any previous session.
tf.keras.backend.clear_session()
parser = argparse.ArgumentParser()
parser.add_argument('--s', help="save_pb_dir", dest="spd", default='../Training/Results/Tensorflow_pb/')
parser.add_argument('--m', help="model_fname", dest="mfn", default='../Training/Results/Keras_h5/MFN.h5')
args = parser.parse_args()
def freeze_graph(graph, session, output, save_pb_dir='.', save_pb_name='MFN.pb', save_pb_as_text=False):
with graph.as_default():
graphdef_inf = tf.graph_util.remove_training_nodes(graph.as_graph_def())
graphdef_frozen = tf.graph_util.convert_variables_to_constants(session, graphdef_inf, output)
graph_io.write_graph(graphdef_frozen, args.spd, save_pb_name, as_text=save_pb_as_text)
return graphdef_frozen
# This line must be executed before loading Keras model.
tf.keras.backend.set_learning_phase(0)
model = load_model(args.mfn)
session = tf.keras.backend.get_session()
INPUT_NODE = [t.op.name for t in model.inputs]
OUTPUT_NODE = [t.op.name for t in model.outputs]
print(INPUT_NODE, OUTPUT_NODE)
frozen_graph = freeze_graph(session.graph, session, [out.op.name for out in model.outputs], save_pb_dir=args.spd)