forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_gram_vaani.py
executable file
·366 lines (324 loc) · 12.5 KB
/
import_gram_vaani.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/env python
import csv
import logging
import math
import os
import subprocess
import urllib
from pathlib import Path
import pandas as pd
from sox import Transformer
import swifter
from deepspeech_training.util.importers import get_importers_parser, get_validate_label
__version__ = "0.1.0"
_logger = logging.getLogger(__name__)
MAX_SECS = 10
BITDEPTH = 16
N_CHANNELS = 1
SAMPLE_RATE = 16000
DEV_PERCENTAGE = 0.10
TRAIN_PERCENTAGE = 0.80
def parse_args(args):
"""Parse command line parameters
Args:
args ([str]): Command line parameters as list of strings
Returns:
:obj:`argparse.Namespace`: command line parameters namespace
"""
parser = get_importers_parser(description="Imports GramVaani data for Deep Speech")
parser.add_argument(
"--version",
action="version",
version="GramVaaniImporter {ver}".format(ver=__version__),
)
parser.add_argument(
"-v",
"--verbose",
action="store_const",
required=False,
help="set loglevel to INFO",
dest="loglevel",
const=logging.INFO,
)
parser.add_argument(
"-vv",
"--very-verbose",
action="store_const",
required=False,
help="set loglevel to DEBUG",
dest="loglevel",
const=logging.DEBUG,
)
parser.add_argument(
"-c",
"--csv_filename",
required=True,
help="Path to the GramVaani csv",
dest="csv_filename",
)
parser.add_argument(
"-t",
"--target_dir",
required=True,
help="Directory in which to save the importer GramVaani data",
dest="target_dir",
)
return parser.parse_args(args)
def setup_logging(level):
"""Setup basic logging
Args:
level (int): minimum log level for emitting messages
"""
format = "[%(asctime)s] %(levelname)s:%(name)s:%(message)s"
logging.basicConfig(
level=level, stream=sys.stdout, format=format, datefmt="%Y-%m-%d %H:%M:%S"
)
class GramVaaniCSV:
"""GramVaaniCSV representing a GramVaani dataset.
Args:
csv_filename (str): Path to the GramVaani csv
Attributes:
data (:class:`pandas.DataFrame`): `pandas.DataFrame` Containing the GramVaani csv data
"""
def __init__(self, csv_filename):
self.data = self._parse_csv(csv_filename)
def _parse_csv(self, csv_filename):
_logger.info("Parsing csv file...%s", os.path.abspath(csv_filename))
data = pd.read_csv(
os.path.abspath(csv_filename),
names=[
"piece_id",
"audio_url",
"transcript_labelled",
"transcript",
"labels",
"content_filename",
"audio_length",
"user_id",
],
usecols=["audio_url", "transcript", "audio_length"],
skiprows=[0],
engine="python",
encoding="utf-8",
quotechar='"',
quoting=csv.QUOTE_ALL,
)
data.dropna(inplace=True)
_logger.info("Parsed %d lines csv file." % len(data))
return data
class GramVaaniDownloader:
"""GramVaaniDownloader downloads a GramVaani dataset.
Args:
gram_vaani_csv (GramVaaniCSV): A GramVaaniCSV representing the data to download
target_dir (str): The path to download the data to
Attributes:
data (:class:`pandas.DataFrame`): `pandas.DataFrame` Containing the GramVaani csv data
"""
def __init__(self, gram_vaani_csv, target_dir):
self.target_dir = target_dir
self.data = gram_vaani_csv.data
def download(self):
"""Downloads the data associated with this instance
Return:
mp3_directory (os.path): The directory into which the associated mp3's were downloaded
"""
mp3_directory = self._pre_download()
self.data.swifter.apply(
func=lambda arg: self._download(*arg, mp3_directory), axis=1, raw=True
)
return mp3_directory
def _pre_download(self):
mp3_directory = os.path.join(self.target_dir, "mp3")
if not os.path.exists(self.target_dir):
_logger.info("Creating directory...%s", self.target_dir)
os.mkdir(self.target_dir)
if not os.path.exists(mp3_directory):
_logger.info("Creating directory...%s", mp3_directory)
os.mkdir(mp3_directory)
return mp3_directory
def _download(self, audio_url, transcript, audio_length, mp3_directory):
if audio_url == "audio_url":
return
mp3_filename = os.path.join(mp3_directory, os.path.basename(audio_url))
if not os.path.exists(mp3_filename):
_logger.debug("Downloading mp3 file...%s", audio_url)
urllib.request.urlretrieve(audio_url, mp3_filename)
else:
_logger.debug("Already downloaded mp3 file...%s", audio_url)
class GramVaaniConverter:
"""GramVaaniConverter converts the mp3's to wav's for a GramVaani dataset.
Args:
target_dir (str): The path to download the data from
mp3_directory (os.path): The path containing the GramVaani mp3's
Attributes:
target_dir (str): The target directory passed as a command line argument
mp3_directory (os.path): The path containing the GramVaani mp3's
"""
def __init__(self, target_dir, mp3_directory):
self.target_dir = target_dir
self.mp3_directory = Path(mp3_directory)
def convert(self):
"""Converts the mp3's associated with this instance to wav's
Return:
wav_directory (os.path): The directory into which the associated wav's were downloaded
"""
wav_directory = self._pre_convert()
for mp3_filename in self.mp3_directory.glob("**/*.mp3"):
wav_filename = os.path.join(
wav_directory,
os.path.splitext(os.path.basename(mp3_filename))[0] + ".wav",
)
if not os.path.exists(wav_filename):
_logger.debug(
"Converting mp3 file %s to wav file %s"
% (mp3_filename, wav_filename)
)
transformer = Transformer()
transformer.convert(
samplerate=SAMPLE_RATE, n_channels=N_CHANNELS, bitdepth=BITDEPTH
)
transformer.build(str(mp3_filename), str(wav_filename))
else:
_logger.debug(
"Already converted mp3 file %s to wav file %s"
% (mp3_filename, wav_filename)
)
return wav_directory
def _pre_convert(self):
wav_directory = os.path.join(self.target_dir, "wav")
if not os.path.exists(self.target_dir):
_logger.info("Creating directory...%s", self.target_dir)
os.mkdir(self.target_dir)
if not os.path.exists(wav_directory):
_logger.info("Creating directory...%s", wav_directory)
os.mkdir(wav_directory)
return wav_directory
class GramVaaniDataSets:
def __init__(self, target_dir, wav_directory, gram_vaani_csv):
self.target_dir = target_dir
self.wav_directory = wav_directory
self.csv_data = gram_vaani_csv.data
self.raw = pd.DataFrame(columns=["wav_filename", "wav_filesize", "transcript"])
self.valid = pd.DataFrame(
columns=["wav_filename", "wav_filesize", "transcript"]
)
self.train = pd.DataFrame(
columns=["wav_filename", "wav_filesize", "transcript"]
)
self.dev = pd.DataFrame(columns=["wav_filename", "wav_filesize", "transcript"])
self.test = pd.DataFrame(columns=["wav_filename", "wav_filesize", "transcript"])
def create(self):
self._convert_csv_data_to_raw_data()
self.raw.index = range(len(self.raw.index))
self.valid = self.raw[self._is_valid_raw_rows()]
self.valid = self.valid.sample(frac=1).reset_index(drop=True)
train_size, dev_size, test_size = self._calculate_data_set_sizes()
self.train = self.valid.loc[0:train_size]
self.dev = self.valid.loc[train_size : train_size + dev_size]
self.test = self.valid.loc[
train_size + dev_size : train_size + dev_size + test_size
]
def _convert_csv_data_to_raw_data(self):
self.raw[["wav_filename", "wav_filesize", "transcript"]] = self.csv_data[
["audio_url", "transcript", "audio_length"]
].swifter.apply(
func=lambda arg: self._convert_csv_data_to_raw_data_impl(*arg),
axis=1,
raw=True,
)
self.raw.reset_index()
def _convert_csv_data_to_raw_data_impl(self, audio_url, transcript, audio_length):
if audio_url == "audio_url":
return pd.Series(["wav_filename", "wav_filesize", "transcript"])
mp3_filename = os.path.basename(audio_url)
wav_relative_filename = os.path.join(
"wav", os.path.splitext(os.path.basename(mp3_filename))[0] + ".wav"
)
wav_filesize = os.path.getsize(
os.path.join(self.target_dir, wav_relative_filename)
)
transcript = validate_label(transcript)
if None == transcript:
transcript = ""
return pd.Series([wav_relative_filename, wav_filesize, transcript])
def _is_valid_raw_rows(self):
is_valid_raw_transcripts = self._is_valid_raw_transcripts()
is_valid_raw_wav_frames = self._is_valid_raw_wav_frames()
is_valid_raw_row = [
(is_valid_raw_transcript & is_valid_raw_wav_frame)
for is_valid_raw_transcript, is_valid_raw_wav_frame in zip(
is_valid_raw_transcripts, is_valid_raw_wav_frames
)
]
series = pd.Series(is_valid_raw_row)
return series
def _is_valid_raw_transcripts(self):
return pd.Series([bool(transcript) for transcript in self.raw.transcript])
def _is_valid_raw_wav_frames(self):
transcripts = [str(transcript) for transcript in self.raw.transcript]
wav_filepaths = [
os.path.join(self.target_dir, str(wav_filename))
for wav_filename in self.raw.wav_filename
]
wav_frames = [
int(
subprocess.check_output(
["soxi", "-s", wav_filepath], stderr=subprocess.STDOUT
)
)
for wav_filepath in wav_filepaths
]
is_valid_raw_wav_frames = [
self._is_wav_frame_valid(wav_frame, transcript)
for wav_frame, transcript in zip(wav_frames, transcripts)
]
return pd.Series(is_valid_raw_wav_frames)
def _is_wav_frame_valid(self, wav_frame, transcript):
is_wav_frame_valid = True
if int(wav_frame / SAMPLE_RATE * 1000 / 10 / 2) < len(str(transcript)):
is_wav_frame_valid = False
elif wav_frame / SAMPLE_RATE > MAX_SECS:
is_wav_frame_valid = False
return is_wav_frame_valid
def _calculate_data_set_sizes(self):
total_size = len(self.valid)
dev_size = math.floor(total_size * DEV_PERCENTAGE)
train_size = math.floor(total_size * TRAIN_PERCENTAGE)
test_size = total_size - (train_size + dev_size)
return (train_size, dev_size, test_size)
def save(self):
datasets = ["train", "dev", "test"]
for dataset in datasets:
self._save(dataset)
def _save(self, dataset):
dataset_path = os.path.join(self.target_dir, dataset + ".csv")
dataframe = getattr(self, dataset)
dataframe.to_csv(
dataset_path,
index=False,
encoding="utf-8",
escapechar="\\",
quoting=csv.QUOTE_MINIMAL,
)
def main(args):
"""Main entry point allowing external calls
Args:
args ([str]): command line parameter list
"""
args = parse_args(args)
validate_label = get_validate_label(args)
setup_logging(args.loglevel)
_logger.info("Starting GramVaani importer...")
_logger.info("Starting loading GramVaani csv...")
csv = GramVaaniCSV(args.csv_filename)
_logger.info("Starting downloading GramVaani mp3's...")
downloader = GramVaaniDownloader(csv, args.target_dir)
mp3_directory = downloader.download()
_logger.info("Starting converting GramVaani mp3's to wav's...")
converter = GramVaaniConverter(args.target_dir, mp3_directory)
wav_directory = converter.convert()
datasets = GramVaaniDataSets(args.target_dir, wav_directory, csv)
datasets.create()
datasets.save()
_logger.info("Finished GramVaani importer...")
main(sys.argv[1:])