RAGVenture provides powerful market analysis capabilities using real-world data from authoritative sources.
The market analysis feature is integrated into the main CLI command:
# Generate ideas with market analysis (default)
python -m src.rag_startups.cli generate-all "AI healthcare" --num-ideas 2
# Skip market analysis
python -m src.rag_startups.cli generate-all "fintech" --no-market
# Show relevant examples with market analysis
python -m src.rag_startups.cli generate-all "edtech" --print-examples
Example output:
╭─────────────────────────── Generated Startup Idea ───────────────────────────╮
│ Name: HealthAI Diagnostics │
│ │
│ Problem: Long wait times and high costs in medical diagnostics │
│ Solution: AI-powered diagnostic platform for rapid disease screening │
│ Target Market: Healthcare providers and diagnostic labs │
│ Unique Value: 90% faster diagnosis with 95% accuracy │
╰─────────────────────────────────────────────────────────────────────────────╯
Market Analysis
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Metric ┃ Value ┃
┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━┩
│ Market Size │ $84.2B (2023) │
│ Growth Rate │ 23.7% CAGR │
│ Competition │ Medium │
│ Opportunity Score │ 8.5/10 │
│ Risk Factors │ • Regulatory approval │
│ │ • Data privacy │
└───────────────────┴───────────────────────┘
from rag_startups.analysis.market_size import MarketSizeEstimator
estimator = MarketSizeEstimator()
market_size = estimator.estimate(
"AI healthcare diagnostics",
region="global",
year=2023
)
print(f"TAM: ${market_size.tam}B")
print(f"SAM: ${market_size.sam}B")
print(f"SOM: ${market_size.som}B")
from rag_startups.analysis.growth import GrowthAnalyzer
analyzer = GrowthAnalyzer()
growth = analyzer.analyze(
sector="healthcare",
subsector="diagnostics",
technology="AI"
)
print(f"CAGR: {growth.cagr}%")
print(f"YoY Growth: {growth.yoy}%")
print(f"Market Stage: {growth.stage}")
from rag_startups.analysis.competition import CompetitionAnalyzer
analyzer = CompetitionAnalyzer()
competition = analyzer.analyze(
idea="AI diagnostics platform",
region="global"
)
print(f"Competition Level: {competition.level}")
print(f"Key Players: {len(competition.key_players)}")
print(f"Entry Barriers: {competition.barriers}")
from rag_startups.analysis.risk import RiskAnalyzer
analyzer = RiskAnalyzer()
risks = analyzer.assess(
idea="AI diagnostics platform",
sector="healthcare"
)
for risk in risks:
print(f"Risk: {risk.name}")
print(f"Impact: {risk.impact}/10")
print(f"Mitigation: {risk.mitigation}")
from rag_startups.analysis.opportunity import OpportunityScorer
scorer = OpportunityScorer()
score = scorer.calculate(
idea="AI diagnostics platform",
market_size=market_size,
growth=growth,
competition=competition,
risks=risks
)
print(f"Overall Score: {score.overall}/10")
print(f"Market Potential: {score.market_potential}/10")
print(f"Technical Feasibility: {score.technical_feasibility}/10")
print(f"Risk-Adjusted Return: {score.risk_adjusted_return}/10")
The market analysis uses data from multiple authoritative sources:
-
Industry Reports
- Gartner
- IDC
- Forrester
- CB Insights
-
Government Data
- Bureau of Labor Statistics
- World Bank
- USPTO (Patent Data)
-
Market Research
- Crunchbase
- PitchBook
- S&P Global
-
Academic Sources
- Research papers
- Industry journals
- Economic databases
You can customize the market analysis through environment variables:
# Optional: Set preferred data sources
MARKET_DATA_SOURCES="gartner,idc,crunchbase"
# Optional: Set analysis region
MARKET_ANALYSIS_REGION="north_america"
# Optional: Set confidence threshold
MARKET_CONFIDENCE_THRESHOLD="0.8"
For more configuration options, see the Configuration Guide.