forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom-boxplot.r
234 lines (217 loc) · 8.79 KB
/
geom-boxplot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#' Box and whiskers plot.
#'
#' The upper and lower "hinges" correspond to the first and third quartiles
#' (the 25th and 75th percentiles). This differs slightly from the method used
#' by the \code{boxplot} function, and may be apparent with small samples.
#' See \code{\link{boxplot.stats}} for for more information on how hinge
#' positions are calculated for \code{boxplot}.
#'
#' The upper whisker extends from the hinge to the highest value that is within
#' 1.5 * IQR of the hinge, where IQR is the inter-quartile range, or distance
#' between the first and third quartiles. The lower whisker extends from the
#' hinge to the lowest value within 1.5 * IQR of the hinge. Data beyond the
#' end of the whiskers are outliers and plotted as points (as specified by Tukey).
#'
#' In a notched box plot, the notches extend \code{1.58 * IQR / sqrt(n)}.
#' This gives a roughly 95% confidence interval for comparing medians.
#' See McGill et al. (1978) for more details.
#'
#' @section Aesthetics:
#' \Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "boxplot")}
#'
#' @seealso \code{\link{stat_quantile}} to view quantiles conditioned on a
#' continuous variable, \code{\link{geom_jitter}} for another way to look
#' at conditional distributions"
#' @inheritParams geom_point
#' @param outlier.colour colour for outlying points. Uses the default from geom_point().
#' @param outlier.shape shape of outlying points. Uses the default from geom_point().
#' @param outlier.size size of outlying points. Uses the default from geom_point().
#' @param notch if \code{FALSE} (default) make a standard box plot. If
#' \code{TRUE}, make a notched box plot. Notches are used to compare groups;
#' if the notches of two boxes do not overlap, this is strong evidence that
#' the medians differ.
#' @param notchwidth for a notched box plot, width of the notch relative to
#' the body (default 0.5)
#' @param varwidth if \code{FALSE} (default) make a standard box plot. If
#' \code{TRUE}, boxes are drawn with widths proportional to the
#' square-roots of the number of observations in the groups (possibly
#' weighted, using the \code{weight} aesthetic).
#' @export
#'
#' @references McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
#' box plots. The American Statistician 32, 12-16.
#'
#' @examples
#' \donttest{
#' p <- ggplot(mtcars, aes(factor(cyl), mpg))
#'
#' p + geom_boxplot()
#' qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot")
#'
#' p + geom_boxplot() + geom_jitter()
#' p + geom_boxplot() + coord_flip()
#' qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot") +
#' coord_flip()
#'
#' p + geom_boxplot(notch = TRUE)
#' p + geom_boxplot(notch = TRUE, notchwidth = .3)
#'
#' p + geom_boxplot(outlier.colour = "green", outlier.size = 3)
#'
#' # Add aesthetic mappings
#' # Note that boxplots are automatically dodged when any aesthetic is
#' # a factor
#' p + geom_boxplot(aes(fill = cyl))
#' p + geom_boxplot(aes(fill = factor(cyl)))
#' p + geom_boxplot(aes(fill = factor(vs)))
#' p + geom_boxplot(aes(fill = factor(am)))
#'
#' # Set aesthetics to fixed value
#' p + geom_boxplot(fill = "grey80", colour = "#3366FF")
#' qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot",
#' colour = I("#3366FF"))
#'
#' # Scales vs. coordinate transforms -------
#' # Scale transformations occur before the boxplot statistics are computed.
#' # Coordinate transformations occur afterwards. Observe the effect on the
#' # number of outliers.
#' library(plyr) # to access round_any
#' m <- ggplot(movies, aes(y = votes, x = rating,
#' group = round_any(rating, 0.5)))
#' m + geom_boxplot()
#' m + geom_boxplot() + scale_y_log10()
#' m + geom_boxplot() + coord_trans(y = "log10")
#' m + geom_boxplot() + scale_y_log10() + coord_trans(y = "log10")
#'
#' # Boxplots with continuous x:
#' # Use the group aesthetic to group observations in boxplots
#' qplot(year, budget, data = movies, geom = "boxplot")
#' qplot(year, budget, data = movies, geom = "boxplot",
#' group = round_any(year, 10, floor))
#'
#' # Using precomputed statistics
#' # generate sample data
#' abc <- adply(matrix(rnorm(100), ncol = 5), 2, quantile, c(0, .25, .5, .75, 1))
#' b <- ggplot(abc, aes(x = X1, ymin = `0%`, lower = `25%`,
#' middle = `50%`, upper = `75%`, ymax = `100%`))
#' b + geom_boxplot(stat = "identity")
#' b + geom_boxplot(stat = "identity") + coord_flip()
#' b + geom_boxplot(aes(fill = X1), stat = "identity")
#'
#' # Using varwidth
#' p + geom_boxplot(varwidth = TRUE)
#' qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot", varwidth = TRUE)
#'
#' # Update the defaults for the outliers by changing the defaults for geom_point
#'
#' p <- ggplot(mtcars, aes(factor(cyl), mpg))
#' p + geom_boxplot()
#'
#' update_geom_defaults("point", list(shape = 1, colour = "red", size = 5))
#' p + geom_boxplot()
#' }
geom_boxplot <- function (mapping = NULL, data = NULL, stat = "boxplot",
position = "dodge", outlier.colour = NULL,
outlier.shape = NULL, outlier.size = NULL,
notch = FALSE, notchwidth = .5, varwidth = FALSE,
...) {
outlier_defaults <- Geom$find('point')$default_aes()
outlier.colour <- outlier.colour %||% outlier_defaults$colour
outlier.shape <- outlier.shape %||% outlier_defaults$shape
outlier.size <- outlier.size %||% outlier_defaults$size
GeomBoxplot$new(mapping = mapping, data = data, stat = stat,
position = position, outlier.colour = outlier.colour,
outlier.shape = outlier.shape, outlier.size = outlier.size, notch = notch,
notchwidth = notchwidth, varwidth = varwidth, ...)
}
GeomBoxplot <- proto(Geom, {
objname <- "boxplot"
reparameterise <- function(., df, params) {
df$width <- df$width %||%
params$width %||% (resolution(df$x, FALSE) * 0.9)
if (!is.null(df$outliers)) {
suppressWarnings({
out_min <- vapply(df$outliers, min, numeric(1))
out_max <- vapply(df$outliers, max, numeric(1))
})
df$ymin_final <- pmin(out_min, df$ymin)
df$ymax_final <- pmax(out_max, df$ymax)
}
# if `varwidth` not requested or not available, don't use it
if (is.null(params) || is.null(params$varwidth) || !params$varwidth || is.null(df$relvarwidth)) {
df$xmin <- df$x - df$width / 2
df$xmax <- df$x + df$width / 2
} else {
# make `relvarwidth` relative to the size of the largest group
df$relvarwidth <- df$relvarwidth / max(df$relvarwidth)
df$xmin <- df$x - df$relvarwidth * df$width / 2
df$xmax <- df$x + df$relvarwidth * df$width / 2
}
df$width <- NULL
if (!is.null(df$relvarwidth)) df$relvarwidth <- NULL
df
}
draw <- function(., data, ..., fatten = 2, outlier.colour = NULL, outlier.shape = NULL, outlier.size = 2,
notch = FALSE, notchwidth = .5, varwidth = FALSE) {
common <- data.frame(
colour = data$colour,
size = data$size,
linetype = data$linetype,
fill = alpha(data$fill, data$alpha),
group = data$group,
stringsAsFactors = FALSE
)
whiskers <- data.frame(
x = data$x,
xend = data$x,
y = c(data$upper, data$lower),
yend = c(data$ymax, data$ymin),
alpha = NA,
common)
box <- data.frame(
xmin = data$xmin,
xmax = data$xmax,
ymin = data$lower,
y = data$middle,
ymax = data$upper,
ynotchlower = ifelse(notch, data$notchlower, NA),
ynotchupper = ifelse(notch, data$notchupper, NA),
notchwidth = notchwidth,
alpha = data$alpha,
common)
if (!is.null(data$outliers) && length(data$outliers[[1]] >= 1)) {
outliers <- data.frame(
y = data$outliers[[1]],
x = data$x[1],
colour = outlier.colour %||% data$colour[1],
shape = outlier.shape %||% data$shape[1],
size = outlier.size %||% data$size[1],
fill = NA,
alpha = NA,
stringsAsFactors = FALSE)
outliers_grob <- GeomPoint$draw(outliers, ...)
} else {
outliers_grob <- NULL
}
ggname(.$my_name(), grobTree(
outliers_grob,
GeomSegment$draw(whiskers, ...),
GeomCrossbar$draw(box, fatten = fatten, ...)
))
}
guide_geom <- function(.) "boxplot"
draw_legend <- function(., data, ...) {
data <- aesdefaults(data, .$default_aes(), list(...))
gp <- with(data, gpar(col=colour, fill=alpha(fill, alpha), lwd=size * .pt, lty = linetype))
gTree(gp = gp, children = gList(
linesGrob(0.5, c(0.1, 0.25)),
linesGrob(0.5, c(0.75, 0.9)),
rectGrob(height=0.5, width=0.75),
linesGrob(c(0.125, 0.875), 0.5)
))
}
default_stat <- function(.) StatBoxplot
default_pos <- function(.) PositionDodge
default_aes <- function(.) aes(weight=1, colour="grey20", fill="white", size=0.5, alpha = NA, shape = 16, linetype = "solid")
required_aes <- c("x", "lower", "upper", "middle", "ymin", "ymax")
})