forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keyring.c
1394 lines (1206 loc) · 36.9 KB
/
keyring.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Keyring handling
*
* Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
* Written by David Howells ([email protected])
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <keys/keyring-type.h>
#include <keys/user-type.h>
#include <linux/assoc_array_priv.h>
#include <linux/uaccess.h>
#include "internal.h"
/*
* When plumbing the depths of the key tree, this sets a hard limit
* set on how deep we're willing to go.
*/
#define KEYRING_SEARCH_MAX_DEPTH 6
/*
* We keep all named keyrings in a hash to speed looking them up.
*/
#define KEYRING_NAME_HASH_SIZE (1 << 5)
/*
* We mark pointers we pass to the associative array with bit 1 set if
* they're keyrings and clear otherwise.
*/
#define KEYRING_PTR_SUBTYPE 0x2UL
static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
{
return (unsigned long)x & KEYRING_PTR_SUBTYPE;
}
static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
{
void *object = assoc_array_ptr_to_leaf(x);
return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
}
static inline void *keyring_key_to_ptr(struct key *key)
{
if (key->type == &key_type_keyring)
return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
return key;
}
static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
static DEFINE_RWLOCK(keyring_name_lock);
static inline unsigned keyring_hash(const char *desc)
{
unsigned bucket = 0;
for (; *desc; desc++)
bucket += (unsigned char)*desc;
return bucket & (KEYRING_NAME_HASH_SIZE - 1);
}
/*
* The keyring key type definition. Keyrings are simply keys of this type and
* can be treated as ordinary keys in addition to having their own special
* operations.
*/
static int keyring_preparse(struct key_preparsed_payload *prep);
static void keyring_free_preparse(struct key_preparsed_payload *prep);
static int keyring_instantiate(struct key *keyring,
struct key_preparsed_payload *prep);
static void keyring_revoke(struct key *keyring);
static void keyring_destroy(struct key *keyring);
static void keyring_describe(const struct key *keyring, struct seq_file *m);
static long keyring_read(const struct key *keyring,
char __user *buffer, size_t buflen);
struct key_type key_type_keyring = {
.name = "keyring",
.def_datalen = 0,
.preparse = keyring_preparse,
.free_preparse = keyring_free_preparse,
.instantiate = keyring_instantiate,
.revoke = keyring_revoke,
.destroy = keyring_destroy,
.describe = keyring_describe,
.read = keyring_read,
};
EXPORT_SYMBOL(key_type_keyring);
/*
* Semaphore to serialise link/link calls to prevent two link calls in parallel
* introducing a cycle.
*/
static DECLARE_RWSEM(keyring_serialise_link_sem);
/*
* Publish the name of a keyring so that it can be found by name (if it has
* one).
*/
static void keyring_publish_name(struct key *keyring)
{
int bucket;
if (keyring->description) {
bucket = keyring_hash(keyring->description);
write_lock(&keyring_name_lock);
if (!keyring_name_hash[bucket].next)
INIT_LIST_HEAD(&keyring_name_hash[bucket]);
list_add_tail(&keyring->type_data.link,
&keyring_name_hash[bucket]);
write_unlock(&keyring_name_lock);
}
}
/*
* Preparse a keyring payload
*/
static int keyring_preparse(struct key_preparsed_payload *prep)
{
return prep->datalen != 0 ? -EINVAL : 0;
}
/*
* Free a preparse of a user defined key payload
*/
static void keyring_free_preparse(struct key_preparsed_payload *prep)
{
}
/*
* Initialise a keyring.
*
* Returns 0 on success, -EINVAL if given any data.
*/
static int keyring_instantiate(struct key *keyring,
struct key_preparsed_payload *prep)
{
assoc_array_init(&keyring->keys);
/* make the keyring available by name if it has one */
keyring_publish_name(keyring);
return 0;
}
/*
* Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
* fold the carry back too, but that requires inline asm.
*/
static u64 mult_64x32_and_fold(u64 x, u32 y)
{
u64 hi = (u64)(u32)(x >> 32) * y;
u64 lo = (u64)(u32)(x) * y;
return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
}
/*
* Hash a key type and description.
*/
static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
{
const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
const char *description = index_key->description;
unsigned long hash, type;
u32 piece;
u64 acc;
int n, desc_len = index_key->desc_len;
type = (unsigned long)index_key->type;
acc = mult_64x32_and_fold(type, desc_len + 13);
acc = mult_64x32_and_fold(acc, 9207);
for (;;) {
n = desc_len;
if (n <= 0)
break;
if (n > 4)
n = 4;
piece = 0;
memcpy(&piece, description, n);
description += n;
desc_len -= n;
acc = mult_64x32_and_fold(acc, piece);
acc = mult_64x32_and_fold(acc, 9207);
}
/* Fold the hash down to 32 bits if need be. */
hash = acc;
if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
hash ^= acc >> 32;
/* Squidge all the keyrings into a separate part of the tree to
* ordinary keys by making sure the lowest level segment in the hash is
* zero for keyrings and non-zero otherwise.
*/
if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
return (hash + (hash << level_shift)) & ~fan_mask;
return hash;
}
/*
* Build the next index key chunk.
*
* On 32-bit systems the index key is laid out as:
*
* 0 4 5 9...
* hash desclen typeptr desc[]
*
* On 64-bit systems:
*
* 0 8 9 17...
* hash desclen typeptr desc[]
*
* We return it one word-sized chunk at a time.
*/
static unsigned long keyring_get_key_chunk(const void *data, int level)
{
const struct keyring_index_key *index_key = data;
unsigned long chunk = 0;
long offset = 0;
int desc_len = index_key->desc_len, n = sizeof(chunk);
level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
switch (level) {
case 0:
return hash_key_type_and_desc(index_key);
case 1:
return ((unsigned long)index_key->type << 8) | desc_len;
case 2:
if (desc_len == 0)
return (u8)((unsigned long)index_key->type >>
(ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
n--;
offset = 1;
default:
offset += sizeof(chunk) - 1;
offset += (level - 3) * sizeof(chunk);
if (offset >= desc_len)
return 0;
desc_len -= offset;
if (desc_len > n)
desc_len = n;
offset += desc_len;
do {
chunk <<= 8;
chunk |= ((u8*)index_key->description)[--offset];
} while (--desc_len > 0);
if (level == 2) {
chunk <<= 8;
chunk |= (u8)((unsigned long)index_key->type >>
(ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
}
return chunk;
}
}
static unsigned long keyring_get_object_key_chunk(const void *object, int level)
{
const struct key *key = keyring_ptr_to_key(object);
return keyring_get_key_chunk(&key->index_key, level);
}
static bool keyring_compare_object(const void *object, const void *data)
{
const struct keyring_index_key *index_key = data;
const struct key *key = keyring_ptr_to_key(object);
return key->index_key.type == index_key->type &&
key->index_key.desc_len == index_key->desc_len &&
memcmp(key->index_key.description, index_key->description,
index_key->desc_len) == 0;
}
/*
* Compare the index keys of a pair of objects and determine the bit position
* at which they differ - if they differ.
*/
static int keyring_diff_objects(const void *object, const void *data)
{
const struct key *key_a = keyring_ptr_to_key(object);
const struct keyring_index_key *a = &key_a->index_key;
const struct keyring_index_key *b = data;
unsigned long seg_a, seg_b;
int level, i;
level = 0;
seg_a = hash_key_type_and_desc(a);
seg_b = hash_key_type_and_desc(b);
if ((seg_a ^ seg_b) != 0)
goto differ;
/* The number of bits contributed by the hash is controlled by a
* constant in the assoc_array headers. Everything else thereafter we
* can deal with as being machine word-size dependent.
*/
level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
seg_a = a->desc_len;
seg_b = b->desc_len;
if ((seg_a ^ seg_b) != 0)
goto differ;
/* The next bit may not work on big endian */
level++;
seg_a = (unsigned long)a->type;
seg_b = (unsigned long)b->type;
if ((seg_a ^ seg_b) != 0)
goto differ;
level += sizeof(unsigned long);
if (a->desc_len == 0)
goto same;
i = 0;
if (((unsigned long)a->description | (unsigned long)b->description) &
(sizeof(unsigned long) - 1)) {
do {
seg_a = *(unsigned long *)(a->description + i);
seg_b = *(unsigned long *)(b->description + i);
if ((seg_a ^ seg_b) != 0)
goto differ_plus_i;
i += sizeof(unsigned long);
} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
}
for (; i < a->desc_len; i++) {
seg_a = *(unsigned char *)(a->description + i);
seg_b = *(unsigned char *)(b->description + i);
if ((seg_a ^ seg_b) != 0)
goto differ_plus_i;
}
same:
return -1;
differ_plus_i:
level += i;
differ:
i = level * 8 + __ffs(seg_a ^ seg_b);
return i;
}
/*
* Free an object after stripping the keyring flag off of the pointer.
*/
static void keyring_free_object(void *object)
{
key_put(keyring_ptr_to_key(object));
}
/*
* Operations for keyring management by the index-tree routines.
*/
static const struct assoc_array_ops keyring_assoc_array_ops = {
.get_key_chunk = keyring_get_key_chunk,
.get_object_key_chunk = keyring_get_object_key_chunk,
.compare_object = keyring_compare_object,
.diff_objects = keyring_diff_objects,
.free_object = keyring_free_object,
};
/*
* Clean up a keyring when it is destroyed. Unpublish its name if it had one
* and dispose of its data.
*
* The garbage collector detects the final key_put(), removes the keyring from
* the serial number tree and then does RCU synchronisation before coming here,
* so we shouldn't need to worry about code poking around here with the RCU
* readlock held by this time.
*/
static void keyring_destroy(struct key *keyring)
{
if (keyring->description) {
write_lock(&keyring_name_lock);
if (keyring->type_data.link.next != NULL &&
!list_empty(&keyring->type_data.link))
list_del(&keyring->type_data.link);
write_unlock(&keyring_name_lock);
}
assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
}
/*
* Describe a keyring for /proc.
*/
static void keyring_describe(const struct key *keyring, struct seq_file *m)
{
if (keyring->description)
seq_puts(m, keyring->description);
else
seq_puts(m, "[anon]");
if (key_is_instantiated(keyring)) {
if (keyring->keys.nr_leaves_on_tree != 0)
seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
else
seq_puts(m, ": empty");
}
}
struct keyring_read_iterator_context {
size_t qty;
size_t count;
key_serial_t __user *buffer;
};
static int keyring_read_iterator(const void *object, void *data)
{
struct keyring_read_iterator_context *ctx = data;
const struct key *key = keyring_ptr_to_key(object);
int ret;
kenter("{%s,%d},,{%zu/%zu}",
key->type->name, key->serial, ctx->count, ctx->qty);
if (ctx->count >= ctx->qty)
return 1;
ret = put_user(key->serial, ctx->buffer);
if (ret < 0)
return ret;
ctx->buffer++;
ctx->count += sizeof(key->serial);
return 0;
}
/*
* Read a list of key IDs from the keyring's contents in binary form
*
* The keyring's semaphore is read-locked by the caller. This prevents someone
* from modifying it under us - which could cause us to read key IDs multiple
* times.
*/
static long keyring_read(const struct key *keyring,
char __user *buffer, size_t buflen)
{
struct keyring_read_iterator_context ctx;
unsigned long nr_keys;
int ret;
kenter("{%d},,%zu", key_serial(keyring), buflen);
if (buflen & (sizeof(key_serial_t) - 1))
return -EINVAL;
nr_keys = keyring->keys.nr_leaves_on_tree;
if (nr_keys == 0)
return 0;
/* Calculate how much data we could return */
ctx.qty = nr_keys * sizeof(key_serial_t);
if (!buffer || !buflen)
return ctx.qty;
if (buflen > ctx.qty)
ctx.qty = buflen;
/* Copy the IDs of the subscribed keys into the buffer */
ctx.buffer = (key_serial_t __user *)buffer;
ctx.count = 0;
ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
if (ret < 0) {
kleave(" = %d [iterate]", ret);
return ret;
}
kleave(" = %zu [ok]", ctx.count);
return ctx.count;
}
/*
* Allocate a keyring and link into the destination keyring.
*/
struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
const struct cred *cred, key_perm_t perm,
unsigned long flags, struct key *dest)
{
struct key *keyring;
int ret;
keyring = key_alloc(&key_type_keyring, description,
uid, gid, cred, perm, flags);
if (!IS_ERR(keyring)) {
ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
if (ret < 0) {
key_put(keyring);
keyring = ERR_PTR(ret);
}
}
return keyring;
}
EXPORT_SYMBOL(keyring_alloc);
/*
* By default, we keys found by getting an exact match on their descriptions.
*/
bool key_default_cmp(const struct key *key,
const struct key_match_data *match_data)
{
return strcmp(key->description, match_data->raw_data) == 0;
}
/*
* Iteration function to consider each key found.
*/
static int keyring_search_iterator(const void *object, void *iterator_data)
{
struct keyring_search_context *ctx = iterator_data;
const struct key *key = keyring_ptr_to_key(object);
unsigned long kflags = key->flags;
kenter("{%d}", key->serial);
/* ignore keys not of this type */
if (key->type != ctx->index_key.type) {
kleave(" = 0 [!type]");
return 0;
}
/* skip invalidated, revoked and expired keys */
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED))) {
ctx->result = ERR_PTR(-EKEYREVOKED);
kleave(" = %d [invrev]", ctx->skipped_ret);
goto skipped;
}
if (key->expiry && ctx->now.tv_sec >= key->expiry) {
if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
ctx->result = ERR_PTR(-EKEYEXPIRED);
kleave(" = %d [expire]", ctx->skipped_ret);
goto skipped;
}
}
/* keys that don't match */
if (!ctx->match_data.cmp(key, &ctx->match_data)) {
kleave(" = 0 [!match]");
return 0;
}
/* key must have search permissions */
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
key_task_permission(make_key_ref(key, ctx->possessed),
ctx->cred, KEY_NEED_SEARCH) < 0) {
ctx->result = ERR_PTR(-EACCES);
kleave(" = %d [!perm]", ctx->skipped_ret);
goto skipped;
}
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
/* we set a different error code if we pass a negative key */
if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
smp_rmb();
ctx->result = ERR_PTR(key->type_data.reject_error);
kleave(" = %d [neg]", ctx->skipped_ret);
goto skipped;
}
}
/* Found */
ctx->result = make_key_ref(key, ctx->possessed);
kleave(" = 1 [found]");
return 1;
skipped:
return ctx->skipped_ret;
}
/*
* Search inside a keyring for a key. We can search by walking to it
* directly based on its index-key or we can iterate over the entire
* tree looking for it, based on the match function.
*/
static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
{
if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
const void *object;
object = assoc_array_find(&keyring->keys,
&keyring_assoc_array_ops,
&ctx->index_key);
return object ? ctx->iterator(object, ctx) : 0;
}
return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
}
/*
* Search a tree of keyrings that point to other keyrings up to the maximum
* depth.
*/
static bool search_nested_keyrings(struct key *keyring,
struct keyring_search_context *ctx)
{
struct {
struct key *keyring;
struct assoc_array_node *node;
int slot;
} stack[KEYRING_SEARCH_MAX_DEPTH];
struct assoc_array_shortcut *shortcut;
struct assoc_array_node *node;
struct assoc_array_ptr *ptr;
struct key *key;
int sp = 0, slot;
kenter("{%d},{%s,%s}",
keyring->serial,
ctx->index_key.type->name,
ctx->index_key.description);
#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
(ctx->flags & STATE_CHECKS) == STATE_CHECKS);
if (ctx->index_key.description)
ctx->index_key.desc_len = strlen(ctx->index_key.description);
/* Check to see if this top-level keyring is what we are looking for
* and whether it is valid or not.
*/
if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
keyring_compare_object(keyring, &ctx->index_key)) {
ctx->skipped_ret = 2;
switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
case 1:
goto found;
case 2:
return false;
default:
break;
}
}
ctx->skipped_ret = 0;
/* Start processing a new keyring */
descend_to_keyring:
kdebug("descend to %d", keyring->serial);
if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED)))
goto not_this_keyring;
/* Search through the keys in this keyring before its searching its
* subtrees.
*/
if (search_keyring(keyring, ctx))
goto found;
/* Then manually iterate through the keyrings nested in this one.
*
* Start from the root node of the index tree. Because of the way the
* hash function has been set up, keyrings cluster on the leftmost
* branch of the root node (root slot 0) or in the root node itself.
* Non-keyrings avoid the leftmost branch of the root entirely (root
* slots 1-15).
*/
ptr = ACCESS_ONCE(keyring->keys.root);
if (!ptr)
goto not_this_keyring;
if (assoc_array_ptr_is_shortcut(ptr)) {
/* If the root is a shortcut, either the keyring only contains
* keyring pointers (everything clusters behind root slot 0) or
* doesn't contain any keyring pointers.
*/
shortcut = assoc_array_ptr_to_shortcut(ptr);
smp_read_barrier_depends();
if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
goto not_this_keyring;
ptr = ACCESS_ONCE(shortcut->next_node);
node = assoc_array_ptr_to_node(ptr);
goto begin_node;
}
node = assoc_array_ptr_to_node(ptr);
smp_read_barrier_depends();
ptr = node->slots[0];
if (!assoc_array_ptr_is_meta(ptr))
goto begin_node;
descend_to_node:
/* Descend to a more distal node in this keyring's content tree and go
* through that.
*/
kdebug("descend");
if (assoc_array_ptr_is_shortcut(ptr)) {
shortcut = assoc_array_ptr_to_shortcut(ptr);
smp_read_barrier_depends();
ptr = ACCESS_ONCE(shortcut->next_node);
BUG_ON(!assoc_array_ptr_is_node(ptr));
}
node = assoc_array_ptr_to_node(ptr);
begin_node:
kdebug("begin_node");
smp_read_barrier_depends();
slot = 0;
ascend_to_node:
/* Go through the slots in a node */
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
ptr = ACCESS_ONCE(node->slots[slot]);
if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
goto descend_to_node;
if (!keyring_ptr_is_keyring(ptr))
continue;
key = keyring_ptr_to_key(ptr);
if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
ctx->result = ERR_PTR(-ELOOP);
return false;
}
goto not_this_keyring;
}
/* Search a nested keyring */
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
key_task_permission(make_key_ref(key, ctx->possessed),
ctx->cred, KEY_NEED_SEARCH) < 0)
continue;
/* stack the current position */
stack[sp].keyring = keyring;
stack[sp].node = node;
stack[sp].slot = slot;
sp++;
/* begin again with the new keyring */
keyring = key;
goto descend_to_keyring;
}
/* We've dealt with all the slots in the current node, so now we need
* to ascend to the parent and continue processing there.
*/
ptr = ACCESS_ONCE(node->back_pointer);
slot = node->parent_slot;
if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
shortcut = assoc_array_ptr_to_shortcut(ptr);
smp_read_barrier_depends();
ptr = ACCESS_ONCE(shortcut->back_pointer);
slot = shortcut->parent_slot;
}
if (!ptr)
goto not_this_keyring;
node = assoc_array_ptr_to_node(ptr);
smp_read_barrier_depends();
slot++;
/* If we've ascended to the root (zero backpointer), we must have just
* finished processing the leftmost branch rather than the root slots -
* so there can't be any more keyrings for us to find.
*/
if (node->back_pointer) {
kdebug("ascend %d", slot);
goto ascend_to_node;
}
/* The keyring we're looking at was disqualified or didn't contain a
* matching key.
*/
not_this_keyring:
kdebug("not_this_keyring %d", sp);
if (sp <= 0) {
kleave(" = false");
return false;
}
/* Resume the processing of a keyring higher up in the tree */
sp--;
keyring = stack[sp].keyring;
node = stack[sp].node;
slot = stack[sp].slot + 1;
kdebug("ascend to %d [%d]", keyring->serial, slot);
goto ascend_to_node;
/* We found a viable match */
found:
key = key_ref_to_ptr(ctx->result);
key_check(key);
if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
key->last_used_at = ctx->now.tv_sec;
keyring->last_used_at = ctx->now.tv_sec;
while (sp > 0)
stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
}
kleave(" = true");
return true;
}
/**
* keyring_search_aux - Search a keyring tree for a key matching some criteria
* @keyring_ref: A pointer to the keyring with possession indicator.
* @ctx: The keyring search context.
*
* Search the supplied keyring tree for a key that matches the criteria given.
* The root keyring and any linked keyrings must grant Search permission to the
* caller to be searchable and keys can only be found if they too grant Search
* to the caller. The possession flag on the root keyring pointer controls use
* of the possessor bits in permissions checking of the entire tree. In
* addition, the LSM gets to forbid keyring searches and key matches.
*
* The search is performed as a breadth-then-depth search up to the prescribed
* limit (KEYRING_SEARCH_MAX_DEPTH).
*
* Keys are matched to the type provided and are then filtered by the match
* function, which is given the description to use in any way it sees fit. The
* match function may use any attributes of a key that it wishes to to
* determine the match. Normally the match function from the key type would be
* used.
*
* RCU can be used to prevent the keyring key lists from disappearing without
* the need to take lots of locks.
*
* Returns a pointer to the found key and increments the key usage count if
* successful; -EAGAIN if no matching keys were found, or if expired or revoked
* keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
* specified keyring wasn't a keyring.
*
* In the case of a successful return, the possession attribute from
* @keyring_ref is propagated to the returned key reference.
*/
key_ref_t keyring_search_aux(key_ref_t keyring_ref,
struct keyring_search_context *ctx)
{
struct key *keyring;
long err;
ctx->iterator = keyring_search_iterator;
ctx->possessed = is_key_possessed(keyring_ref);
ctx->result = ERR_PTR(-EAGAIN);
keyring = key_ref_to_ptr(keyring_ref);
key_check(keyring);
if (keyring->type != &key_type_keyring)
return ERR_PTR(-ENOTDIR);
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
if (err < 0)
return ERR_PTR(err);
}
rcu_read_lock();
ctx->now = current_kernel_time();
if (search_nested_keyrings(keyring, ctx))
__key_get(key_ref_to_ptr(ctx->result));
rcu_read_unlock();
return ctx->result;
}
/**
* keyring_search - Search the supplied keyring tree for a matching key
* @keyring: The root of the keyring tree to be searched.
* @type: The type of keyring we want to find.
* @description: The name of the keyring we want to find.
*
* As keyring_search_aux() above, but using the current task's credentials and
* type's default matching function and preferred search method.
*/
key_ref_t keyring_search(key_ref_t keyring,
struct key_type *type,
const char *description)
{
struct keyring_search_context ctx = {
.index_key.type = type,
.index_key.description = description,
.cred = current_cred(),
.match_data.cmp = key_default_cmp,
.match_data.raw_data = description,
.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
.flags = KEYRING_SEARCH_DO_STATE_CHECK,
};
key_ref_t key;
int ret;
if (type->match_preparse) {
ret = type->match_preparse(&ctx.match_data);
if (ret < 0)
return ERR_PTR(ret);
}
key = keyring_search_aux(keyring, &ctx);
if (type->match_free)
type->match_free(&ctx.match_data);
return key;
}
EXPORT_SYMBOL(keyring_search);
/*
* Search the given keyring for a key that might be updated.
*
* The caller must guarantee that the keyring is a keyring and that the
* permission is granted to modify the keyring as no check is made here. The
* caller must also hold a lock on the keyring semaphore.
*
* Returns a pointer to the found key with usage count incremented if
* successful and returns NULL if not found. Revoked and invalidated keys are
* skipped over.
*
* If successful, the possession indicator is propagated from the keyring ref
* to the returned key reference.
*/
key_ref_t find_key_to_update(key_ref_t keyring_ref,
const struct keyring_index_key *index_key)
{
struct key *keyring, *key;
const void *object;
keyring = key_ref_to_ptr(keyring_ref);
kenter("{%d},{%s,%s}",
keyring->serial, index_key->type->name, index_key->description);
object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
index_key);
if (object)
goto found;
kleave(" = NULL");
return NULL;
found:
key = keyring_ptr_to_key(object);
if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED))) {
kleave(" = NULL [x]");
return NULL;
}
__key_get(key);
kleave(" = {%d}", key->serial);
return make_key_ref(key, is_key_possessed(keyring_ref));
}
/*
* Find a keyring with the specified name.
*
* All named keyrings in the current user namespace are searched, provided they
* grant Search permission directly to the caller (unless this check is
* skipped). Keyrings whose usage points have reached zero or who have been
* revoked are skipped.
*
* Returns a pointer to the keyring with the keyring's refcount having being
* incremented on success. -ENOKEY is returned if a key could not be found.
*/
struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
{
struct key *keyring;
int bucket;
if (!name)
return ERR_PTR(-EINVAL);
bucket = keyring_hash(name);
read_lock(&keyring_name_lock);
if (keyring_name_hash[bucket].next) {
/* search this hash bucket for a keyring with a matching name
* that's readable and that hasn't been revoked */
list_for_each_entry(keyring,
&keyring_name_hash[bucket],
type_data.link
) {
if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
continue;
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
continue;