forked from PrincetonUniversity/VST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcl.v
403 lines (324 loc) · 12.5 KB
/
gcl.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
Load loadpath. Load ssrloadpath.
Require Import veristar.basic veristar.variables.
Require Import ssreflect ssrbool ssrnat ssrfun seq eqtype.
Require Import NArith NOrderedType.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Definition var := N.
Definition val := N.
Definition addr := N.
Definition label := N.
(** integer and address expressions *)
Inductive abinop : Type :=
| Aplus
| Aminus
| Amult.
Inductive aexpr : Type :=
| AEvar : var -> aexpr
| AEval : val -> aexpr
| AEbinop : abinop -> aexpr -> aexpr -> aexpr.
(** boolean expressions *)
Inductive expr : Type :=
| Etrue
| Efalse
| Eneg : expr -> expr
| Eleq : aexpr -> aexpr -> expr
| Eand : expr -> expr -> expr
| Eor : expr -> expr -> expr
| Eaddr_eq : aexpr -> aexpr -> expr.
(** commands *)
Inductive stmt : Type :=
| Sskip : stmt
| Sassume : expr -> stmt
| Sassert : expr -> stmt
| Sassign : var -> aexpr -> stmt
| Sload : var -> aexpr -> stmt
| Sstore : aexpr -> aexpr -> stmt.
(** continuations *)
Inductive cont : Type :=
| Ksafe
| Kseq : stmt -> cont -> cont
| Kifte : expr -> cont -> cont -> cont
| Kgoto : label -> cont.
(** programs *)
Definition prog := label -> option cont.
(** states *)
Definition store := var -> option val.
Definition heap := addr -> option val.
Inductive state : Type := State : store -> heap -> state.
(** executable semantics *)
Definition eval_abinop (op : abinop) :=
match op with
| Aplus => Nplus
| Aminus => Nminus
| Amult => Nmult
end.
Section eval_aexpr.
Variable (s : store).
Fixpoint eval_aexpr (ae : aexpr) : option val :=
match ae with
| AEvar x => s x
| AEval n => Some n
| AEbinop op e1 e2 =>
obnd (fun n1 => obnd (fun n2 => Some (eval_abinop op n1 n2))
(eval_aexpr e2)) (eval_aexpr e1)
end.
End eval_aexpr.
Section eval_expr.
Variables (s : store) (h : heap).
Fixpoint eval_expr (e : expr) : option bool :=
match e with
| Etrue => Some true
| Efalse => Some false
| Eneg e' => obnd (fun b => Some (negb b)) (eval_expr e')
| Eleq ie1 ie2 =>
obnd (fun n1 => obnd (fun n2 => Some (Nleb n1 n2))
(eval_aexpr s ie1)) (eval_aexpr s ie2)
| Eand e1 e2 =>
obnd (fun b1 => obnd (fun b2 => Some (andb b1 b2))
(eval_expr e1)) (eval_expr e2)
| Eor e1 e2 =>
obnd (fun b1 => obnd (fun b2 => Some (orb b1 b2))
(eval_expr e1)) (eval_expr e2)
| Eaddr_eq ae1 ae2 =>
obnd (fun a1 => obnd (fun a2 => Some (Neqb a1 a2))
(eval_aexpr s ae1)) (eval_aexpr s ae2)
end.
End eval_expr.
Definition store_upd (x : var) (v : val) (s : store) :=
fun y => if Neqb x y then Some v else s y.
Definition heap_upd (a : addr) (v : val) (h : heap) :=
fun b => if Neqb a b then Some v else h b.
Definition prog_upd (l : label) (k : cont) (P : prog) :=
fun l' => if Neqb l l' then Some k else P l'.
Definition empty (_ : var) : option val := None.
Definition empty_prog (_ : var) : option cont := None.
Definition result := option state.
Notation inl := (inl _).
Notation inr := (inr _).
(** we need the bound [n] since programs may in general not terminate *)
Fixpoint eval n (k : cont) (P : prog) (s : store) (h : heap) : result :=
match n with O => None | S n' =>
match k with
| Ksafe => Some (State s h)
| Kseq Sskip k' => eval n' k' P s h
| Kseq (Sassume e) k' =>
obnd (fun b : bool => if b then eval n' k' P s h
else Some (State s h)) (eval_expr s e)
| Kseq (Sassert e) k' =>
obnd (fun b : bool => if b then eval n' k' P s h
else None) (eval_expr s e)
| Kseq (Sassign x e) k' =>
obnd (fun v => eval n' k' P (store_upd x v s) h) (eval_aexpr s e)
| Kseq (Sload x e) k' =>
obnd (fun l => obnd (fun v => eval n' k' P (store_upd x v s) h) (h l))
(eval_aexpr s e)
| Kseq (Sstore e1 e2) k' =>
obnd (fun l => obnd (fun v => eval n' k' P s (heap_upd l v h))
(eval_aexpr s e2)) (eval_aexpr s e1)
| Kifte e k1 k2 =>
obnd (fun b : bool => if b then eval n' k1 P s h
else eval n' k2 P s h) (eval_expr s e)
| Kgoto l => obnd (fun k' => eval n' k' P s h) (P l)
end end.
Definition eval_prog n (P : prog) s h := obnd (fun k => eval n k P s h) (P 0%N).
(** interpret a simple program *)
Module T1.
Local Open Scope N_scope.
Definition x : var := 1.
Definition y : var := 2.
Definition z : var := 3.
Definition h1 : heap :=
heap_upd 4 1 (heap_upd 8 32
(heap_upd 32 2 (heap_upd 36 12
(heap_upd 12 3 (heap_upd 16 0 empty))))).
Definition P1 : prog :=
prog_upd 0
(Kseq (Sassign x (AEval 4)) (Kgoto 1)) (
prog_upd 1
(Kseq (Sload y (AEvar x))
(Kifte (Eaddr_eq (AEvar y) (AEval 0))
(Kseq (Sassert (Eaddr_eq (AEvar y) (AEval 0))) Ksafe)
(Kseq (Sassign x (AEbinop Aplus (AEvar x) (AEval 4)))
(Kgoto 1))))
empty_prog).
Compute obnd (fun st => match st with
| State s h => s y
end) (eval_prog 100 P1 empty h1).
End T1.
(** operational semantics *)
Inductive step {P : prog} : state -> cont -> state -> cont -> Prop :=
| step_Sskip : forall s k, step s (Kseq Sskip k) s k
| step_Sassume1 : forall e s h k,
eval_expr s e = Some false ->
step (State s h) (Kseq (Sassume e) k) (State s h) Ksafe
| step_Sassume2 : forall e s h k,
eval_expr s e = Some true ->
step (State s h) (Kseq (Sassume e) k) (State s h) k
| step_Sassert : forall e s h k,
eval_expr s e = Some true ->
step (State s h) (Kseq (Sassert e) k) (State s h) k
| step_Sassign : forall x e v s h k,
eval_aexpr s e = Some v ->
step (State s h) (Kseq (Sassign x e) k) (State (store_upd x v s) h) k
| step_Sload : forall x e v l s h k,
eval_aexpr s e = Some l -> h l = Some v ->
step (State s h) (Kseq (Sload x e) k) (State (store_upd x v s) h) k
| step_Sstore : forall e1 e2 v l s h k,
eval_aexpr s e2 = Some v -> eval_aexpr s e1 = Some l ->
step (State s h) (Kseq (Sstore e1 e2) k) (State s (heap_upd l v h)) k
| step_Ksafe : forall s, step s Ksafe s Ksafe
| step_Kifte1 : forall e s h k1 k2,
eval_expr s e = Some true ->
step (State s h) (Kifte e k1 k2) (State s h) k1
| step_Kifte2 : forall e s h k1 k2,
eval_expr s e = Some false ->
step (State s h) (Kifte e k1 k2) (State s h) k2
| step_Kgoto : forall l s k, P l = Some k -> step s (Kgoto l) s k.
Implicit Arguments step [].
(** general properties of step relations *)
Section step.
Variable (state cont : Type).
Variable (step : state -> cont -> state -> cont -> Prop).
Inductive star : state -> cont -> state -> cont -> Prop :=
| star_refl s k : star s k s k
| star_step s k s2 k2 s' k' :
step s k s2 k2 -> star s2 k2 s' k' -> star s k s' k'.
Inductive stepN : nat -> state -> cont -> state -> cont -> Prop :=
| stepO s k : stepN O s k s k
| stepS s k s2 k2 s' k' n :
step s k s2 k2 -> stepN n s2 k2 s' k' ->
stepN (S n) s k s' k'.
Lemma star_stepN s k s' k' :
star s k s' k' <-> exists n, stepN n s k s' k'.
Proof.
split=>[|[n H1]].
- elim=>{s k s' k'}=>[s k|s k s2 k2 s' k' H1 H2 [n H3]];
[by exists O; apply: stepO|by exists (n.+1); apply: (stepS H1 H3)].
- elim: H1=>{s k s' k'}=>[s k|s k s2 k2 s' k' n' H1 H2 H3];
[by apply: star_refl|by apply: (star_step H1 H3)].
Qed.
Inductive plus : state -> cont -> state -> cont -> Prop :=
| plus_left : forall s k s2 k2 s' k',
step s k s2 k2 -> star s2 k2 s' k' -> plus s k s' k'.
Lemma plus_step1 s k s' k' :
plus s k s' k' <-> exists n, stepN (S n) s k s' k'.
Proof.
split=>[|[n H1]].
- case=>{s k s' k'}=>s k s2 k2 s' k' H1.
by move/star_stepN=>[n H2]; exists n; apply: (stepS H1 H2).
- inversion H1; subst; apply: (plus_left H0).
by rewrite star_stepN; exists n.
Qed.
End step.
Implicit Arguments stepS [state step cont s k s' k' n].
Inductive prog_star : state -> prog -> state -> cont -> Prop :=
| star_prog : forall P s k s' k',
P 0%N = Some k -> star (step P) s k s' k' ->
prog_star s P s' k'.
(** interpreter is sound *)
Lemma stepN_Ksafe n P (s : state) : stepN (step P) n s Ksafe s Ksafe.
Proof.
move: s; induction n=>[[s h]|[s h]]; first by apply: stepO.
apply: (stepS (State s h) Ksafe); last by apply: (IHn (State s h)).
by apply: step_Ksafe.
Qed.
Lemma eval_soundN n k P s h s' h' :
eval n k P s h = Some (State s' h') ->
exists k', stepN (step P) n (State s h) k (State s' h') k'.
Proof.
move: s h s' h' k; induction n=>//s h s' h' k H1; case: k IHn H1.
-(*Ksafe*) by move/(_ s h)=>H1 /=; case=><-<-; exists Ksafe; apply: stepN_Ksafe.
-(*Kseq*) move=>c k; case H: c=>/=[|e|e|x e|x e|e1 e2]H1 H2.
+(*Sskip*) move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State s h) k); first by apply: step_Sskip.
+(*Sassume*) move: H2; case He: (eval_expr s e)=>[/=[]|]//.
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State s h) k); first by apply: step_Sassume2.
case=><-<-; exists Ksafe; apply: (stepS (State s h) Ksafe)=>//.
by apply: step_Sassume1. by apply stepN_Ksafe.
+(*Sassert*) move: H2; case He: (eval_expr s e)=>[/=[]|]//.
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State s h) k); first by apply: step_Sassert.
+(*Sassign*) move: H2; case He: (eval_aexpr s e)=>[/=a|]//.
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State (store_upd x a s) h) k); first by apply: step_Sassign.
+(*Sload*) move: H2; case He:(eval_aexpr s e)=>//[/=l]; case Ha:(h l)=>[a|]//=.
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
apply: (stepS (State (store_upd x a s) h) k)=>//.
by apply:(step_Sload _ _ He Ha).
+(*Sstore*) move: H2.
case He1: (eval_aexpr s e1)=>//[/=a1]; case He2: (eval_aexpr s e2)=>//[/=a2].
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
apply: (stepS (State s (heap_upd a1 a2 h)) k)=>//.
by apply:(step_Sstore _ _ He2 He1).
-(*Kifte*) move=>e k1 k2 /= H1; case He: (eval_expr s e)=>//[/=[]];
move=>H2; move: H1; move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State s h) k1); first by apply: step_Kifte1.
by apply: (stepS (State s h) k2); first by apply: step_Kifte2.
-(*Kgoto*) move=>l /= H1; case Hp: (P l)=>//[/=k2]=>H2; move: H1.
move/(_ _ _ _ _ _ H2)=>[k' H3]; exists k'.
by apply: (stepS (State s h) k2)=>//; first by apply: step_Kgoto.
Qed.
Lemma eval_sound n k P s h s' h' :
eval n k P s h = Some (State s' h') ->
exists k', star (step P) (State s h) k (State s' h') k'.
Proof.
move=>H1; move: (eval_soundN H1)=>[k' H2]; exists k'.
by rewrite star_stepN; exists n.
Qed.
Lemma eval_prog_sound n P s h s' h' :
eval_prog n P s h = Some (State s' h') ->
exists k', prog_star (State s h) P (State s' h') k'.
Proof.
rewrite/eval_prog; case Hp: (P 0%N)=>//[/=k]; move/eval_sound=>[k' H1].
by exists k'; apply: (star_prog Hp).
Qed.
(** safety *)
Section safety.
Variable (state cont : Type).
Variable (step : state -> cont -> state -> cont -> Prop).
Notation star := (star step).
Notation stepN := (stepN step).
Definition safe s k := forall s2 k2,
star s k s2 k2 -> exists s', exists k', step s2 k2 s' k'.
Definition safeN s k := forall s2 k2 n,
stepN n s k s2 k2 -> exists s', exists k', step s2 k2 s' k'.
Lemma safe_safeN s k : safe s k <-> safeN s k.
Proof.
rewrite/safe/safeN; split=>H1 s2 k2.
- move=>n H2; case: (H1 s2 k2); first by apply/star_stepN; exists n.
by move=>s' [k' H3]; exists s'; exists k'.
- move/star_stepN=>[n' H2]; case: (H1 _ _ _ H2)=>s' [k' H3].
by exists s'; exists k'.
Qed.
Lemma safety_induction R s k :
(forall s k, R s k -> exists s', exists k', step s k s' k') ->
(forall s k s' k', R s k -> step s k s' k' -> R s' k') ->
R s k -> safe s k.
Proof.
move=>H1 H2 H3; rewrite/safe=>s2 k2/star_stepN=>[[n H4]].
move: s k s2 k2 H3 H4; induction n=>s k s2 k2 H3 H4.
- by inversion H4; subst; apply: H1=>//.
- by inversion H4; subst=>{H4}; apply: (IHn s1 k1 s2 k2 (H2 _ _ _ _ H3 H0)).
Qed.
End safety.
(** simulations *)
Section simulation.
Variables (state cont : Type)
(R : state -> cont -> state -> cont -> Prop)
(S T : state -> cont -> state -> cont -> Prop)
(rank : state -> cont -> nat).
(** T simulates S *)
Definition simulates :=
forall s1 k1 s1' k1' s2 k2,
R s1 k1 s2 k2 -> S s1 k1 s1' k1' ->
exists s2', exists k2', plus T s2 k2 s2' k2' /\ R s1' k1' s2' k2'.
(** T wf-simulates S, with ranking function [rank] *)
Definition wf_simulates :=
forall s1 k1 s1' k1' s2 k2,
R s1 k1 s2 k2 -> S s1 k1 s1' k1' ->
(exists s2', exists k2', plus T s2 k2 s2' k2' /\ R s1' k1' s2' k2') \/
(rank s1' k1' < rank s1 k1 /\ R s1' k1' s2 k2).
End simulation.