forked from chiphuyen/stanford-tensorflow-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstyle_transfer.py
232 lines (196 loc) · 8.96 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
""" Implementation in TensorFlow of the paper
A Neural Algorithm of Artistic Style (Gatys et al., 2016)
Created by Chip Huyen ([email protected])
CS20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
For more details, please read the assignment handout:
https://docs.google.com/document/d/1FpueD-3mScnD0SJQDtwmOb1FrSwo1NGowkXzMwPoLH4/edit?usp=sharing
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import time
import numpy as np
import tensorflow as tf
import load_vgg
import utils
def setup():
utils.safe_mkdir('checkpoints')
utils.safe_mkdir('outputs')
class StyleTransfer(object):
def __init__(self, content_img, style_img, img_width, img_height):
'''
img_width and img_height are the dimensions we expect from the generated image.
We will resize input content image and input style image to match this dimension.
Feel free to alter any hyperparameter here and see how it affects your training.
'''
self.img_width = img_width
self.img_height = img_height
self.content_img = utils.get_resized_image(content_img, img_width, img_height)
self.style_img = utils.get_resized_image(style_img, img_width, img_height)
self.initial_img = utils.generate_noise_image(self.content_img, img_width, img_height)
###############################
## TO DO
## create global step (gstep) and hyperparameters for the model
self.content_layer = 'conv4_2'
self.style_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
# content_w, style_w: corresponding weights for content loss and style loss
self.content_w = None
self.style_w = None
# style_layer_w: weights for different style layers. deep layers have more weights
self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
self.gstep = None # global step
self.lr = None
###############################
def create_input(self):
'''
We will use one input_img as a placeholder for the content image,
style image, and generated image, because:
1. they have the same dimension
2. we have to extract the same set of features from them
We use a variable instead of a placeholder because we're, at the same time,
training the generated image to get the desirable result.
Note: image height corresponds to number of rows, not columns.
'''
with tf.variable_scope('input') as scope:
self.input_img = tf.get_variable('in_img',
shape=([1, self.img_height, self.img_width, 3]),
dtype=tf.float32,
initializer=tf.zeros_initializer())
def load_vgg(self):
'''
Load the saved model parameters of VGG-19, using the input_img
as the input to compute the output at each layer of vgg.
During training, VGG-19 mean-centered all images and found the mean pixels
to be [123.68, 116.779, 103.939] along RGB dimensions. We have to subtract
this mean from our images.
'''
self.vgg = load_vgg.VGG(self.input_img)
self.vgg.load()
self.content_img -= self.vgg.mean_pixels
self.style_img -= self.vgg.mean_pixels
def _content_loss(self, P, F):
''' Calculate the loss between the feature representation of the
content image and the generated image.
Inputs:
P: content representation of the content image
F: content representation of the generated image
Read the assignment handout for more details
Note: Don't use the coefficient 0.5 as defined in the paper.
Use the coefficient defined in the assignment handout.
'''
###############################
## TO DO
self.content_loss = None
###############################
def _gram_matrix(self, F, N, M):
""" Create and return the gram matrix for tensor F
Hint: you'll first have to reshape F
"""
###############################
## TO DO
return None
###############################
def _single_style_loss(self, a, g):
""" Calculate the style loss at a certain layer
Inputs:
a is the feature representation of the style image at that layer
g is the feature representation of the generated image at that layer
Output:
the style loss at a certain layer (which is E_l in the paper)
Hint: 1. you'll have to use the function _gram_matrix()
2. we'll use the same coefficient for style loss as in the paper
3. a and g are feature representation, not gram matrices
"""
###############################
## TO DO
return None
###############################
def _style_loss(self, A):
""" Calculate the total style loss as a weighted sum
of style losses at all style layers
Hint: you'll have to use _single_style_loss()
"""
###############################
## TO DO
self.style_loss = None
###############################
def losses(self):
with tf.variable_scope('losses') as scope:
with tf.Session() as sess:
# assign content image to the input variable
sess.run(self.input_img.assign(self.content_img))
gen_img_content = getattr(self.vgg, self.content_layer)
content_img_content = sess.run(gen_img_content)
self._content_loss(content_img_content, gen_img_content)
with tf.Session() as sess:
sess.run(self.input_img.assign(self.style_img))
style_layers = sess.run([getattr(self.vgg, layer) for layer in self.style_layers])
self._style_loss(style_layers)
##########################################
## TO DO: create total loss.
## Hint: don't forget the weights for the content loss and style loss
self.total_loss = None
##########################################
def optimize(self):
###############################
## TO DO: create optimizer
self.opt = None
###############################
def create_summary(self):
###############################
## TO DO: create summaries for all the losses
## Hint: don't forget to merge them
self.summary_op = None
###############################
def build(self):
self.create_input()
self.load_vgg()
self.losses()
self.optimize()
self.create_summary()
def train(self, n_iters):
skip_step = 1
with tf.Session() as sess:
###############################
## TO DO:
## 1. initialize your variables
## 2. create writer to write your grapp
###############################
sess.run(self.input_img.assign(self.initial_img))
###############################
## TO DO:
## 1. create a saver object
## 2. check if a checkpoint exists, restore the variables
##############################
initial_step = self.gstep.eval()
start_time = time.time()
for index in range(initial_step, n_iters):
if index >= 5 and index < 20:
skip_step = 10
elif index >= 20:
skip_step = 20
sess.run(self.opt)
if (index + 1) % skip_step == 0:
###############################
## TO DO: obtain generated image, loss, and summary
gen_image, total_loss, summary = None, None, None
###############################
# add back the mean pixels we subtracted before
gen_image = gen_image + self.vgg.mean_pixels
writer.add_summary(summary, global_step=index)
print('Step {}\n Sum: {:5.1f}'.format(index + 1, np.sum(gen_image)))
print(' Loss: {:5.1f}'.format(total_loss))
print(' Took: {} seconds'.format(time.time() - start_time))
start_time = time.time()
filename = 'outputs/%d.png' % (index)
utils.save_image(filename, gen_image)
if (index + 1) % 20 == 0:
###############################
## TO DO: save the variables into a checkpoint
###############################
pass
if __name__ == '__main__':
setup()
machine = StyleTransfer('content/deadpool.jpg', 'styles/guernica.jpg', 333, 250)
machine.build()
machine.train(300)