forked from chiphuyen/stanford-tensorflow-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_linreg_dataset.py
74 lines (58 loc) · 2.33 KB
/
03_linreg_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
""" Solution for simple linear regression example using tf.data
Created by Chip Huyen ([email protected])
CS20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
Lecture 03
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import utils
DATA_FILE = 'data/birth_life_2010.txt'
# Step 1: read in the data
data, n_samples = utils.read_birth_life_data(DATA_FILE)
# Step 2: create Dataset and iterator
dataset = tf.data.Dataset.from_tensor_slices((data[:,0], data[:,1]))
iterator = dataset.make_initializable_iterator()
X, Y = iterator.get_next()
# Step 3: create weight and bias, initialized to 0
w = tf.get_variable('weights', initializer=tf.constant(0.0))
b = tf.get_variable('bias', initializer=tf.constant(0.0))
# Step 4: build model to predict Y
Y_predicted = X * w + b
# Step 5: use the square error as the loss function
loss = tf.square(Y - Y_predicted, name='loss')
# loss = utils.huber_loss(Y, Y_predicted)
# Step 6: using gradient descent with learning rate of 0.001 to minimize loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
start = time.time()
with tf.Session() as sess:
# Step 7: initialize the necessary variables, in this case, w and b
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter('./graphs/linear_reg', sess.graph)
# Step 8: train the model for 100 epochs
for i in range(100):
sess.run(iterator.initializer) # initialize the iterator
total_loss = 0
try:
while True:
_, l = sess.run([optimizer, loss])
total_loss += l
except tf.errors.OutOfRangeError:
pass
print('Epoch {0}: {1}'.format(i, total_loss/n_samples))
# close the writer when you're done using it
writer.close()
# Step 9: output the values of w and b
w_out, b_out = sess.run([w, b])
print('w: %f, b: %f' %(w_out, b_out))
print('Took: %f seconds' %(time.time() - start))
# plot the results
plt.plot(data[:,0], data[:,1], 'bo', label='Real data')
plt.plot(data[:,0], data[:,0] * w_out + b_out, 'r', label='Predicted data with squared error')
# plt.plot(data[:,0], data[:,0] * (-5.883589) + 85.124306, 'g', label='Predicted data with Huber loss')
plt.legend()
plt.show()