forked from chiphuyen/stanford-tensorflow-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernels.py
120 lines (101 loc) · 2.71 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import tensorflow as tf
a = np.zeros([3, 3, 3, 3])
a[1, 1, :, :] = 0.25
a[0, 1, :, :] = 0.125
a[1, 0, :, :] = 0.125
a[2, 1, :, :] = 0.125
a[1, 2, :, :] = 0.125
a[0, 0, :, :] = 0.0625
a[0, 2, :, :] = 0.0625
a[2, 0, :, :] = 0.0625
a[2, 2, :, :] = 0.0625
BLUR_FILTER_RGB = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 1, 1])
# a[1, 1, :, :] = 0.25
# a[0, 1, :, :] = 0.125
# a[1, 0, :, :] = 0.125
# a[2, 1, :, :] = 0.125
# a[1, 2, :, :] = 0.125
# a[0, 0, :, :] = 0.0625
# a[0, 2, :, :] = 0.0625
# a[2, 0, :, :] = 0.0625
# a[2, 2, :, :] = 0.0625
a[1, 1, :, :] = 1.0
a[0, 1, :, :] = 1.0
a[1, 0, :, :] = 1.0
a[2, 1, :, :] = 1.0
a[1, 2, :, :] = 1.0
a[0, 0, :, :] = 1.0
a[0, 2, :, :] = 1.0
a[2, 0, :, :] = 1.0
a[2, 2, :, :] = 1.0
BLUR_FILTER = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 3, 3])
a[1, 1, :, :] = 5
a[0, 1, :, :] = -1
a[1, 0, :, :] = -1
a[2, 1, :, :] = -1
a[1, 2, :, :] = -1
SHARPEN_FILTER_RGB = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 1, 1])
a[1, 1, :, :] = 5
a[0, 1, :, :] = -1
a[1, 0, :, :] = -1
a[2, 1, :, :] = -1
a[1, 2, :, :] = -1
SHARPEN_FILTER = tf.constant(a, dtype=tf.float32)
# a = np.zeros([3, 3, 3, 3])
# a[:, :, :, :] = -1
# a[1, 1, :, :] = 8
# EDGE_FILTER_RGB = tf.constant(a, dtype=tf.float32)
EDGE_FILTER_RGB = tf.constant([
[[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]],
[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]],
[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]]],
[[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]],
[[ 8., 0., 0.], [ 0., 8., 0.], [ 0., 0., 8.]],
[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]]],
[[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]],
[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]],
[[ -1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]]]
])
a = np.zeros([3, 3, 1, 1])
# a[:, :, :, :] = -1
# a[1, 1, :, :] = 8
a[0, 1, :, :] = -1
a[1, 0, :, :] = -1
a[1, 2, :, :] = -1
a[2, 1, :, :] = -1
a[1, 1, :, :] = 4
EDGE_FILTER = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 3, 3])
a[0, :, :, :] = 1
a[0, 1, :, :] = 2 # originally 2
a[2, :, :, :] = -1
a[2, 1, :, :] = -2
TOP_SOBEL_RGB = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 1, 1])
a[0, :, :, :] = 1
a[0, 1, :, :] = 2 # originally 2
a[2, :, :, :] = -1
a[2, 1, :, :] = -2
TOP_SOBEL = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 3, 3])
a[0, 0, :, :] = -2
a[0, 1, :, :] = -1
a[1, 0, :, :] = -1
a[1, 1, :, :] = 1
a[1, 2, :, :] = 1
a[2, 1, :, :] = 1
a[2, 2, :, :] = 2
EMBOSS_FILTER_RGB = tf.constant(a, dtype=tf.float32)
a = np.zeros([3, 3, 1, 1])
a[0, 0, :, :] = -2
a[0, 1, :, :] = -1
a[1, 0, :, :] = -1
a[1, 1, :, :] = 1
a[1, 2, :, :] = 1
a[2, 1, :, :] = 1
a[2, 2, :, :] = 2
EMBOSS_FILTER = tf.constant(a, dtype=tf.float32)