forked from openvswitch/ovs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test-hash.c
182 lines (166 loc) · 6.11 KB
/
test-hash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
* Copyright (c) 2009, 2012, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hash.h"
#include "jhash.h"
#include "ovstest.h"
#undef NDEBUG
#include <assert.h>
static void
set_bit(uint32_t array[3], int bit)
{
assert(bit >= 0 && bit <= 96);
memset(array, 0, sizeof(uint32_t) * 3);
if (bit < 96) {
array[bit / 32] = UINT32_C(1) << (bit % 32);
}
}
static uint32_t
hash_words_cb(uint32_t input)
{
return hash_words(&input, 1, 0);
}
static uint32_t
jhash_words_cb(uint32_t input)
{
return jhash_words(&input, 1, 0);
}
static uint32_t
hash_int_cb(uint32_t input)
{
return hash_int(input, 0);
}
static void
check_word_hash(uint32_t (*hash)(uint32_t), const char *name,
int min_unique)
{
int i, j;
for (i = 0; i <= 32; i++) {
uint32_t in1 = i < 32 ? UINT32_C(1) << i : 0;
for (j = i + 1; j <= 32; j++) {
uint32_t in2 = j < 32 ? UINT32_C(1) << j : 0;
uint32_t out1 = hash(in1);
uint32_t out2 = hash(in2);
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
int ofs;
for (ofs = 0; ofs < 32 - min_unique; ofs++) {
uint32_t bits1 = (out1 >> ofs) & unique_mask;
uint32_t bits2 = (out2 >> ofs) & unique_mask;
if (bits1 == bits2) {
printf("Partial collision for '%s':\n", name);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in1, out1);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in2, out2);
printf("%d bits of output starting at bit %d "
"are both 0x%"PRIx32"\n", min_unique, ofs, bits1);
exit(1);
}
}
}
}
}
static void
check_3word_hash(uint32_t (*hash)(const uint32_t[], size_t, uint32_t),
const char *name)
{
int i, j;
for (i = 0; i <= 96; i++) {
for (j = i + 1; j <= 96; j++) {
uint32_t in0[3], in1[3], in2[3];
uint32_t out0,out1, out2;
const int min_unique = 12;
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
set_bit(in0, i);
set_bit(in1, i);
set_bit(in2, j);
out0 = hash(in0, 3, 0);
out1 = hash(in1, 3, 0);
out2 = hash(in2, 3, 0);
if (out0 != out1) {
printf("%s hash not the same for non-64 aligned data "
"%08"PRIx32" != %08"PRIx32"\n", name, out0, out1);
}
if ((out1 & unique_mask) == (out2 & unique_mask)) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %d) == %08"PRIx32"\n", i, out1);
printf("hash(1 << %d) == %08"PRIx32"\n", j, out2);
printf("The low-order %d bits of output are both "
"0x%"PRIx32"\n", min_unique, out1 & unique_mask);
}
}
}
}
static void
test_hash_main(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
/* Check that all hashes computed with hash_words with one 1-bit (or no
* 1-bits) set within a single 32-bit word have different values in all
* 11-bit consecutive runs.
*
* Given a random distribution, the probability of at least one collision
* in any set of 11 bits is approximately
*
* 1 - (proportion of same_bits)
* **(binomial_coefficient(n_bits_in_data + 1, 2))
* == 1 - ((2**11 - 1)/2**11)**C(33,2)
* == 1 - (2047/2048)**528
* =~ 0.22
*
* There are 21 ways to pick 11 consecutive bits in a 32-bit word, so if we
* assumed independence then the chance of having no collisions in any of
* those 11-bit runs would be (1-0.22)**21 =~ .0044. Obviously
* independence must be a bad assumption :-)
*/
check_word_hash(hash_words_cb, "hash_words", 11);
check_word_hash(jhash_words_cb, "jhash_words", 11);
/* Check that all hash functions of with one 1-bit (or no 1-bits) set
* within three 32-bit words have different values in their lowest 12
* bits.
*
* Given a random distribution, the probability of at least one collision
* in 12 bits is approximately
*
* 1 - ((2**12 - 1)/2**12)**C(97,2)
* == 1 - (4095/4096)**4656
* =~ 0.68
*
* so we are doing pretty well to not have any collisions in 12 bits.
*/
check_3word_hash(hash_words, "hash_words");
check_3word_hash(jhash_words, "jhash_words");
/* Check that all hashes computed with hash_int with one 1-bit (or no
* 1-bits) set within a single 32-bit word have different values in all
* 12-bit consecutive runs.
*
* Given a random distribution, the probability of at least one collision
* in any set of 12 bits is approximately
*
* 1 - ((2**12 - 1)/2**12)**C(33,2)
* == 1 - (4,095/4,096)**528
* =~ 0.12
*
* There are 20 ways to pick 12 consecutive bits in a 32-bit word, so if we
* assumed independence then the chance of having no collisions in any of
* those 12-bit runs would be (1-0.12)**20 =~ 0.078. This refutes our
* assumption of independence, which makes it seem like a good hash
* function.
*/
check_word_hash(hash_int_cb, "hash_int", 12);
}
OVSTEST_REGISTER("test-hash", test_hash_main);