属性用@property装饰器装饰,进行懒运算 提高效率
QA_DataStruct具有的功能:
- 数据容器
- 数据变换 [分拆/合并/倒序] split/merge/reverse
- 数据透视 pivot
- 数据筛选 select_time/select_time_with_gap/select_code/get_bar
- 数据复权 to_qfq/to_hfq
- 数据显示 show
- 格式变换 to_json/to_pandas/to_list/to_numpy
- 数据库式查询 query
- 画图 plot
- 计算指标 add_func
- 生成器 panel_gen(按时间分类的面板生成器)/security_gen(按股票分类的股票生成器)
QA_DataStruct_Stock_block
- (属性)该类下的所有板块名称 block_name
- 查询某一只股票所在的所有板块 get_code(code)
- 查询某一个板块下的所有股票 get_block(block)
- 展示当前类下的所有数据 show
我们可以通过
import QUANTAXIS as QA
# QA.QA_fetch_stock_day_adv
# QA.QA_fetch_stock_min_adv
# QA.QA_fetch_index_day_adv
# QA.QA_fetch_index_min_adv
day线的参数是code, start, end min线的参数是code, start, end, frequence='1min'
其中 code 可以是一个股票,也可以是一列股票(list)
取一个股票的数据
QA.QA_fetch_stock_day_adv('000001','2017-01-01','2017-10-01')
In [5]: QA.QA_fetch_stock_day_adv('000001','2017-01-01','2017-10-01')
Out[5]: QA_DataStruct_Stock_day with 1 securities
取多个股票的数据
QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-01-01','2017-10-01')
In [6]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-01-01','2017-10-01')
Out[6]: QA_DataStruct_Stock_day with 2 securities
显示结构体的数据 .data
In [10]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').data
Out[10]:
code open high low close volume date
date code
2017-09-20 000001 000001 11.14 11.37 11.05 11.29 787154.0 2017-09-20
2017-09-21 000001 000001 11.26 11.51 11.20 11.46 692407.0 2017-09-21
2017-09-22 000001 000001 11.43 11.52 11.31 11.44 593927.0 2017-09-22
2017-09-25 000001 000001 11.44 11.45 11.18 11.29 532391.0 2017-09-25
2017-09-26 000001 000001 11.26 11.30 10.96 11.05 967460.0 2017-09-26
2017-09-27 000001 000001 11.01 11.08 10.90 10.93 727188.0 2017-09-27
2017-09-28 000001 000001 10.98 10.98 10.82 10.88 517220.0 2017-09-28
2017-09-29 000001 000001 10.92 11.16 10.86 11.11 682280.0 2017-09-29
2017-09-20 000002 000002 28.50 29.55 28.00 28.73 613095.0 2017-09-20
2017-09-21 000002 000002 28.50 29.06 27.75 28.40 536324.0 2017-09-21
2017-09-22 000002 000002 28.39 28.67 27.52 27.81 423093.0 2017-09-22
2017-09-25 000002 000002 27.20 27.20 26.10 26.12 722702.0 2017-09-25
2017-09-26 000002 000002 26.12 27.22 26.10 26.76 593044.0 2017-09-26
2017-09-27 000002 000002 27.00 27.28 26.52 26.84 367534.0 2017-09-27
2017-09-28 000002 000002 27.00 27.15 26.40 26.41 262347.0 2017-09-28
2017-09-29 000002 000002 26.56 26.80 26.00 26.25 345752.0 2017-09-29
显示结构体的开/高/收/低 .open/.high/.close/.low
In [5]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').high
Out[5]:
date code
2017-09-20 000001 11.37
2017-09-21 000001 11.51
2017-09-22 000001 11.52
2017-09-25 000001 11.45
2017-09-26 000001 11.30
2017-09-27 000001 11.08
2017-09-28 000001 10.98
2017-09-29 000001 11.16
2017-09-20 000002 29.55
2017-09-21 000002 29.06
2017-09-22 000002 28.67
2017-09-25 000002 27.20
2017-09-26 000002 27.22
2017-09-27 000002 27.28
2017-09-28 000002 27.15
2017-09-29 000002 26.80
Name: high, dtype: float64
数据结构复权to_qfq()/to_hfq()
返回的是一个DataStruct,用.data展示返回的数据的结构
其中DataStruct.if_fq的属性会改变
In [4]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').to_qfq().data
Out[4]:
code open high low close volume date \
date code
2017-09-20 000001 000001 11.14 11.37 11.05 11.29 787154.0 2017-09-20
2017-09-21 000001 000001 11.26 11.51 11.20 11.46 692407.0 2017-09-21
2017-09-22 000001 000001 11.43 11.52 11.31 11.44 593927.0 2017-09-22
2017-09-25 000001 000001 11.44 11.45 11.18 11.29 532391.0 2017-09-25
2017-09-26 000001 000001 11.26 11.30 10.96 11.05 967460.0 2017-09-26
2017-09-27 000001 000001 11.01 11.08 10.90 10.93 727188.0 2017-09-27
2017-09-28 000001 000001 10.98 10.98 10.82 10.88 517220.0 2017-09-28
2017-09-29 000001 000001 10.92 11.16 10.86 11.11 682280.0 2017-09-29
2017-09-20 000002 000002 28.50 29.55 28.00 28.73 613095.0 2017-09-20
2017-09-21 000002 000002 28.50 29.06 27.75 28.40 536324.0 2017-09-21
2017-09-22 000002 000002 28.39 28.67 27.52 27.81 423093.0 2017-09-22
2017-09-25 000002 000002 27.20 27.20 26.10 26.12 722702.0 2017-09-25
2017-09-26 000002 000002 26.12 27.22 26.10 26.76 593044.0 2017-09-26
2017-09-27 000002 000002 27.00 27.28 26.52 26.84 367534.0 2017-09-27
2017-09-28 000002 000002 27.00 27.15 26.40 26.41 262347.0 2017-09-28
2017-09-29 000002 000002 26.56 26.80 26.00 26.25 345752.0 2017-09-29
preclose adj
date code
2017-09-20 000001 NaN 1.0
2017-09-21 000001 11.29 1.0
2017-09-22 000001 11.46 1.0
2017-09-25 000001 11.44 1.0
2017-09-26 000001 11.29 1.0
2017-09-27 000001 11.05 1.0
2017-09-28 000001 10.93 1.0
2017-09-29 000001 10.88 1.0
2017-09-20 000002 NaN 1.0
2017-09-21 000002 28.73 1.0
2017-09-22 000002 28.40 1.0
2017-09-25 000002 27.81 1.0
2017-09-26 000002 26.12 1.0
2017-09-27 000002 26.76 1.0
2017-09-28 000002 26.84 1.0
2017-09-29 000002 26.41 1.0
数据透视 .pivot()
In [6]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').pivot('open')
Out[6]:
code 000001 000002
date
2017-09-20 11.14 28.50
2017-09-21 11.26 28.50
2017-09-22 11.43 28.39
2017-09-25 11.44 27.20
2017-09-26 11.26 26.12
2017-09-27 11.01 27.00
2017-09-28 10.98 27.00
2017-09-29 10.92 26.56
数据的时间筛选.select_time(start,end)
In [10]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_time('2017-09-20','2017-09-25')
Out[10]: QA_DataStruct_Stock_day with 2 securities
In [11]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_time('2017-09-20','2017-09-25').data
Out[11]:
code open high low close volume date
date code
2017-09-20 000001 000001 11.14 11.37 11.05 11.29 787154.0 2017-09-20
2017-09-21 000001 000001 11.26 11.51 11.20 11.46 692407.0 2017-09-21
2017-09-22 000001 000001 11.43 11.52 11.31 11.44 593927.0 2017-09-22
2017-09-25 000001 000001 11.44 11.45 11.18 11.29 532391.0 2017-09-25
2017-09-20 000002 000002 28.50 29.55 28.00 28.73 613095.0 2017-09-20
2017-09-21 000002 000002 28.50 29.06 27.75 28.40 536324.0 2017-09-21
2017-09-22 000002 000002 28.39 28.67 27.52 27.81 423093.0 2017-09-22
2017-09-25 000002 000002 27.20 27.20 26.10 26.12 722702.0 2017-09-25
数据按时间往前/往后推 select_time_with_gap(time,gap,methods)
time是你选择的时间 gap是长度 (int) methods有 '<=','lte','<','lt','eq','==','>','gt','>=','gte'的选项
In [14]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_time_with_gap('2017-09-20',2,'gt')
Out[14]: QA_DataStruct_Stock_day with 2 securities
In [15]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_time_with_gap('2017-09-20',2,'gt').data
Out[15]:
code open high low close volume date
date code
2017-09-21 000001 000001 11.26 11.51 11.20 11.46 692407.0 2017-09-21
2017-09-22 000001 000001 11.43 11.52 11.31 11.44 593927.0 2017-09-22
2017-09-21 000002 000002 28.50 29.06 27.75 28.40 536324.0 2017-09-21
2017-09-22 000002 000002 28.39 28.67 27.52 27.81 423093.0 2017-09-22
选取结构组里面某一只股票select_code(code)
In [16]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_code('000001')
Out[16]: QA_DataStruct_Stock_day with 1 securities
In [17]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').select_code('000001').data
Out[17]:
code open high low close volume date
date code
2017-09-20 000001 000001 11.14 11.37 11.05 11.29 787154.0 2017-09-20
2017-09-21 000001 000001 11.26 11.51 11.20 11.46 692407.0 2017-09-21
2017-09-22 000001 000001 11.43 11.52 11.31 11.44 593927.0 2017-09-22
2017-09-25 000001 000001 11.44 11.45 11.18 11.29 532391.0 2017-09-25
2017-09-26 000001 000001 11.26 11.30 10.96 11.05 967460.0 2017-09-26
2017-09-27 000001 000001 11.01 11.08 10.90 10.93 727188.0 2017-09-27
2017-09-28 000001 000001 10.98 10.98 10.82 10.88 517220.0 2017-09-28
2017-09-29 000001 000001 10.92 11.16 10.86 11.11 682280.0 2017-09-29
取某一只股票的某一个时间的bar(code,time,if_trade)
第三个选项 默认是True
第三选项的意义在于,如果出现了停牌,参数如果是True 那么就会返回空值 而如果是False,就会返回停牌前最后一个交易日的值
In [18]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').get_bar('000001','2017-09-20',True)
Out[18]: QA_DataStruct_Stock_day with 1 securities
In [19]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').get_bar('000001','2017-09-20',True).data
Out[19]:
code open high low close volume date
date code
2017-09-20 000001 000001 11.14 11.37 11.05 11.29 787154.0 2017-09-20
画图 plot(code)
如果是()空值 就会把全部的股票都画出来
In [20]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').plot()
QUANTAXIS>> The Pic has been saved to your path: .\QA_stock_day_codepackage_bfq.html
In [21]: QA.QA_fetch_stock_day_adv(['000001','000002'],'2017-09-20','2017-10-01').plot('000001')
QUANTAXIS>> The Pic has been saved to your path: .\QA_stock_day_000001_bfq.html