Skip to content

Official code base of the BEVDet series .

License

Notifications You must be signed in to change notification settings

venti-sam/MinkOcc

Repository files navigation

MinkOcc

Get Started

Installation and Data Preparation

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions.

pip install torch==1.12.0+cu113 torchvision==0.13.0+cu114 -f https://download.pytorch.org/whl/torch_stable.html
Recommended torch>=1.12

c. Install mmcv-full.

pip install mmcv-full==1.5.2

d. Install mmdet and mmseg.

pip install mmdet==2.24.0
pip install mmsegmentation==0.24.0

e. Prepare MinkOcc repo by.

git clone https://github.com/venti-sam/MinkOcc.git
cd MinkOcc
pip install -v -e .

f. Download Nuscenes Mini dataset:

https://www.nuscenes.org/nuscenes#download

step 3. Prepare nuScenes dataset as introduced in nuscenes_det.md and create the pkl for MinkOcc by running:

python tools/create_data_bevdet.py

g. For Occupancy Prediction task, download the mini and (only) the 'gts' from CVPR2023-3D-Occupancy-Prediction and arrange the folder as:

└── nuscenes
    ├── v1.0-mini (existing)
    ├── sweeps  (existing)
    ├── samples (existing)
    └── gts (new)

Train model

# single gpu
python tools/train.py configs/bevdet_occ/bevdet_minkocc.py

Test model

python tools/test.py $config $checkpoint --eval mAP

Acknowledgement

This project is not possible without multiple great open-sourced code bases. We list some notable examples below.

Beside, there are some other attractive works extend the boundary of BEVDet.

Bibtex

If this work is helpful for your research, please consider citing the following BibTeX entries.


@article{huang2023dal,
title={Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection},
author={Huang, Junjie and Ye, Yun and Liang, Zhujin and Shan, Yi and Du, Dalong},
journal={arXiv preprint arXiv:2311.07152},
year={2023}
}

@article{huang2022bevpoolv2,
title={BEVPoolv2: A Cutting-edge Implementation of BEVDet Toward Deployment},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2211.17111},
year={2022}
}

@article{huang2022bevdet4d,
title={BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2203.17054},
year={2022}
}

@article{huang2021bevdet,
title={BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View},
author={Huang, Junjie and Huang, Guan and Zhu, Zheng and Yun, Ye and Du, Dalong},
journal={arXiv preprint arXiv:2112.11790},
year={2021}
}

```

```

About

Official code base of the BEVDet series .

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Other 1.3%