a. Create a conda virtual environment and activate it.
conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab
b. Install PyTorch and torchvision following the official instructions.
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu114 -f https://download.pytorch.org/whl/torch_stable.html
Recommended torch>=1.12
c. Install mmcv-full.
pip install mmcv-full==1.5.2
d. Install mmdet and mmseg.
pip install mmdet==2.24.0
pip install mmsegmentation==0.24.0
e. Prepare MinkOcc repo by.
git clone https://github.com/venti-sam/MinkOcc.git
cd MinkOcc
pip install -v -e .
f. Download Nuscenes Mini dataset:
https://www.nuscenes.org/nuscenes#download
step 3. Prepare nuScenes dataset as introduced in nuscenes_det.md and create the pkl for MinkOcc by running:
python tools/create_data_bevdet.py
g. For Occupancy Prediction task, download the mini and (only) the 'gts' from CVPR2023-3D-Occupancy-Prediction and arrange the folder as:
└── nuscenes
├── v1.0-mini (existing)
├── sweeps (existing)
├── samples (existing)
└── gts (new)
# single gpu
python tools/train.py configs/bevdet_occ/bevdet_minkocc.py
python tools/test.py $config $checkpoint --eval mAP
This project is not possible without multiple great open-sourced code bases. We list some notable examples below.
Beside, there are some other attractive works extend the boundary of BEVDet.
If this work is helpful for your research, please consider citing the following BibTeX entries.
@article{huang2023dal,
title={Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection},
author={Huang, Junjie and Ye, Yun and Liang, Zhujin and Shan, Yi and Du, Dalong},
journal={arXiv preprint arXiv:2311.07152},
year={2023}
}
@article{huang2022bevpoolv2,
title={BEVPoolv2: A Cutting-edge Implementation of BEVDet Toward Deployment},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2211.17111},
year={2022}
}
@article{huang2022bevdet4d,
title={BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2203.17054},
year={2022}
}
@article{huang2021bevdet,
title={BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View},
author={Huang, Junjie and Huang, Guan and Zhu, Zheng and Yun, Ye and Du, Dalong},
journal={arXiv preprint arXiv:2112.11790},
year={2021}
}
```
```