forked from krrish94/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nerf_helpers.py
374 lines (314 loc) · 13.2 KB
/
nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import math
from typing import Optional
import torch
from torch import searchsorted as torchsearchsorted
# import torchsearchsorted
def img2mse(img_src, img_tgt):
return torch.nn.functional.mse_loss(img_src, img_tgt)
def mse2psnr(mse):
# For numerical stability, avoid a zero mse loss.
if mse == 0:
mse = 1e-5
return -10.0 * math.log10(mse)
def get_minibatches(inputs: torch.Tensor, chunksize: Optional[int] = 1024 * 8):
r"""Takes a huge tensor (ray "bundle") and splits it into a list of minibatches.
Each element of the list (except possibly the last) has dimension `0` of length
`chunksize`.
"""
return [inputs[i : i + chunksize] for i in range(0, inputs.shape[0], chunksize)]
def meshgrid_xy(
tensor1: torch.Tensor, tensor2: torch.Tensor
) -> (torch.Tensor, torch.Tensor):
"""Mimick np.meshgrid(..., indexing="xy") in pytorch. torch.meshgrid only allows "ij" indexing.
(If you're unsure what this means, safely skip trying to understand this, and run a tiny example!)
Args:
tensor1 (torch.Tensor): Tensor whose elements define the first dimension of the returned meshgrid.
tensor2 (torch.Tensor): Tensor whose elements define the second dimension of the returned meshgrid.
"""
# TESTED
ii, jj = torch.meshgrid(tensor1, tensor2)
return ii.transpose(-1, -2), jj.transpose(-1, -2)
def cumprod_exclusive(tensor: torch.Tensor) -> torch.Tensor:
r"""Mimick functionality of tf.math.cumprod(..., exclusive=True), as it isn't available in PyTorch.
Args:
tensor (torch.Tensor): Tensor whose cumprod (cumulative product, see `torch.cumprod`) along dim=-1
is to be computed.
Returns:
cumprod (torch.Tensor): cumprod of Tensor along dim=-1, mimiciking the functionality of
tf.math.cumprod(..., exclusive=True) (see `tf.math.cumprod` for details).
"""
# TESTED
# Only works for the last dimension (dim=-1)
dim = -1
# Compute regular cumprod first (this is equivalent to `tf.math.cumprod(..., exclusive=False)`).
cumprod = torch.cumprod(tensor, dim)
# "Roll" the elements along dimension 'dim' by 1 element.
cumprod = torch.roll(cumprod, 1, dim)
# Replace the first element by "1" as this is what tf.cumprod(..., exclusive=True) does.
cumprod[..., 0] = 1.0
return cumprod
def get_ray_bundle(
height: int, width: int, focal_length: float, tform_cam2world: torch.Tensor
):
r"""Compute the bundle of rays passing through all pixels of an image (one ray per pixel).
Args:
height (int): Height of an image (number of pixels).
width (int): Width of an image (number of pixels).
focal_length (float or torch.Tensor): Focal length (number of pixels, i.e., calibrated intrinsics).
tform_cam2world (torch.Tensor): A 6-DoF rigid-body transform (shape: :math:`(4, 4)`) that
transforms a 3D point from the camera frame to the "world" frame for the current example.
Returns:
ray_origins (torch.Tensor): A tensor of shape :math:`(width, height, 3)` denoting the centers of
each ray. `ray_origins[i][j]` denotes the origin of the ray passing through pixel at
row index `j` and column index `i`.
(TODO: double check if explanation of row and col indices convention is right).
ray_directions (torch.Tensor): A tensor of shape :math:`(width, height, 3)` denoting the
direction of each ray (a unit vector). `ray_directions[i][j]` denotes the direction of the ray
passing through the pixel at row index `j` and column index `i`.
(TODO: double check if explanation of row and col indices convention is right).
"""
# TESTED
ii, jj = meshgrid_xy(
torch.arange(
width, dtype=tform_cam2world.dtype, device=tform_cam2world.device
).to(tform_cam2world),
torch.arange(
height, dtype=tform_cam2world.dtype, device=tform_cam2world.device
),
)
directions = torch.stack(
[
(ii - width * 0.5) / focal_length,
-(jj - height * 0.5) / focal_length,
-torch.ones_like(ii),
],
dim=-1,
)
ray_directions = torch.sum(
directions[..., None, :] * tform_cam2world[:3, :3], dim=-1
)
ray_origins = tform_cam2world[:3, -1].expand(ray_directions.shape)
return ray_origins, ray_directions
def positional_encoding(
tensor, num_encoding_functions=6, include_input=True, log_sampling=True
) -> torch.Tensor:
r"""Apply positional encoding to the input.
Args:
tensor (torch.Tensor): Input tensor to be positionally encoded.
encoding_size (optional, int): Number of encoding functions used to compute
a positional encoding (default: 6).
include_input (optional, bool): Whether or not to include the input in the
positional encoding (default: True).
Returns:
(torch.Tensor): Positional encoding of the input tensor.
"""
# TESTED
# Trivially, the input tensor is added to the positional encoding.
encoding = [tensor] if include_input else []
frequency_bands = None
if log_sampling:
frequency_bands = 2.0 ** torch.linspace(
0.0,
num_encoding_functions - 1,
num_encoding_functions,
dtype=tensor.dtype,
device=tensor.device,
)
else:
frequency_bands = torch.linspace(
2.0 ** 0.0,
2.0 ** (num_encoding_functions - 1),
num_encoding_functions,
dtype=tensor.dtype,
device=tensor.device,
)
for freq in frequency_bands:
for func in [torch.sin, torch.cos]:
encoding.append(func(tensor * freq))
# Special case, for no positional encoding
if len(encoding) == 1:
return encoding[0]
else:
return torch.cat(encoding, dim=-1)
def get_embedding_function(
num_encoding_functions=6, include_input=True, log_sampling=True
):
r"""Returns a lambda function that internally calls positional_encoding.
"""
return lambda x: positional_encoding(
x, num_encoding_functions, include_input, log_sampling
)
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# UNTESTED, but fairly sure.
# Shift rays origins to near plane
t = -(near + rays_o[..., 2]) / rays_d[..., 2]
rays_o = rays_o + t[..., None] * rays_d
# Projection
o0 = -1.0 / (W / (2.0 * focal)) * rays_o[..., 0] / rays_o[..., 2]
o1 = -1.0 / (H / (2.0 * focal)) * rays_o[..., 1] / rays_o[..., 2]
o2 = 1.0 + 2.0 * near / rays_o[..., 2]
d0 = (
-1.0
/ (W / (2.0 * focal))
* (rays_d[..., 0] / rays_d[..., 2] - rays_o[..., 0] / rays_o[..., 2])
)
d1 = (
-1.0
/ (H / (2.0 * focal))
* (rays_d[..., 1] / rays_d[..., 2] - rays_o[..., 1] / rays_o[..., 2])
)
d2 = -2.0 * near / rays_o[..., 2]
rays_o = torch.stack([o0, o1, o2], -1)
rays_d = torch.stack([d0, d1, d2], -1)
return rays_o, rays_d
def gather_cdf_util(cdf, inds):
r"""A very contrived way of mimicking a version of the tf.gather()
call used in the original impl.
"""
orig_inds_shape = inds.shape
inds_flat = [inds[i].view(-1) for i in range(inds.shape[0])]
valid_mask = [
torch.where(ind >= cdf.shape[1], torch.zeros_like(ind), torch.ones_like(ind))
for ind in inds_flat
]
inds_flat = [
torch.where(ind >= cdf.shape[1], (cdf.shape[1] - 1) * torch.ones_like(ind), ind)
for ind in inds_flat
]
cdf_flat = [cdf[i][ind] for i, ind in enumerate(inds_flat)]
cdf_flat = [cdf_flat[i] * valid_mask[i] for i in range(len(cdf_flat))]
cdf_flat = [
cdf_chunk.reshape([1] + list(orig_inds_shape[1:])) for cdf_chunk in cdf_flat
]
return torch.cat(cdf_flat, dim=0)
def sample_pdf(bins, weights, num_samples, det=False):
# TESTED (Carefully, line-to-line).
# But chances of bugs persist; haven't integration-tested with
# training routines.
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / weights.sum(-1).unsqueeze(-1)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat((torch.zeros_like(cdf[..., :1]), cdf), -1)
# Take uniform samples
if det:
u = torch.linspace(0.0, 1.0, num_samples).to(weights)
u = u.expand(list(cdf.shape[:-1]) + [num_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [num_samples]).to(weights)
# Invert CDF
inds = torchsearchsorted.searchsorted(
cdf.contiguous(), u.contiguous(), side="right"
)
below = torch.max(torch.zeros_like(inds), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack((below, above), -1)
orig_inds_shape = inds_g.shape
cdf_g = gather_cdf_util(cdf, inds_g)
bins_g = gather_cdf_util(bins, inds_g)
denom = cdf_g[..., 1] - cdf_g[..., 0]
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def sample_pdf_2(bins, weights, num_samples, det=False):
r"""sample_pdf function from another concurrent pytorch implementation
by yenchenlin (https://github.com/yenchenlin/nerf-pytorch).
"""
weights = weights + 1e-5
pdf = weights / torch.sum(weights, dim=-1, keepdim=True)
cdf = torch.cumsum(pdf, dim=-1)
cdf = torch.cat(
[torch.zeros_like(cdf[..., :1]), cdf], dim=-1
) # (batchsize, len(bins))
# Take uniform samples
if det:
u = torch.linspace(
0.0, 1.0, steps=num_samples, dtype=weights.dtype, device=weights.device
)
u = u.expand(list(cdf.shape[:-1]) + [num_samples])
else:
u = torch.rand(
list(cdf.shape[:-1]) + [num_samples],
dtype=weights.dtype,
device=weights.device,
)
# Invert CDF
u = u.contiguous()
cdf = cdf.contiguous()
inds = torchsearchsorted.searchsorted(cdf, u, side="right")
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack((below, above), dim=-1) # (batchsize, num_samples, 2)
matched_shape = (inds_g.shape[0], inds_g.shape[1], cdf.shape[-1])
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = cdf_g[..., 1] - cdf_g[..., 0]
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
if __name__ == "__main__":
# # meshgrid_xy
# i, j = np.meshgrid(np.arange(3), np.arange(4, 7), indexing='xy')
# print(i)
# print(j)
# ii, jj = torch.meshgrid(torch.arange(3), torch.arange(4, 7))
# print(ii.transpose(-1, -2))
# print(jj.transpose(-1, -2))
# ii, jj = meshgrid_xy(torch.arange(3), torch.arange(4, 7))
# print(ii)
# print(jj)
# # dirs (get_rays_np)
# H, W = 3, 3
# focal = 10
# i, j = np.meshgrid(np.arange(3), np.arange(4, 7), indexing='xy')
# dirs = np.stack([(i - W) * .5 / focal, -(j - H) * .5 / focal, -np.ones_like(i)], -1)
# print(dirs)
# ii, jj = meshgrid_xy(torch.arange(3).float(), torch.arange(4, 7).float())
# dirs_torch = torch.stack([(ii - W) * .5 / focal, -(jj - H) * .5 / focal, -torch.ones_like(ii)], -1)
# print(dirs_torch)
# print(np.allclose(dirs, dirs_torch.cpu().numpy()))
# # rays_o, rays_d (get_rays_np)
# H, W = 3, 3
# focal = 10
# c2w = np.eye(4)
# c2w[:3, :3] = 2 * c2w[:3, :3]
# i, j = np.meshgrid(np.arange(3), np.arange(4, 7), indexing='xy')
# dirs = np.stack([(i - W) * .5 / focal, -(j - H) * .5 / focal, -np.ones_like(i)], -1)
# rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3, :3], -1)
# rays_o = np.broadcast_to(c2w[:3, -1], np.shape(rays_d))
# print(rays_d)
# print(rays_o)
# ii, jj = meshgrid_xy(torch.arange(3).float(), torch.arange(4, 7).float())
# dirs_torch = torch.stack([(ii - W) * .5 / focal, -(jj - H) * .5 / focal, -torch.ones_like(ii)], -1)
# c2w_torch = torch.eye(4)
# c2w_torch[:3, :3] = 2 * c2w_torch[:3, :3]
# rays_d_torch = torch.sum(dirs_torch[..., None, :] * c2w_torch[:3, :3], -1)
# rays_o_torch = c2w_torch[:3, -1].expand(rays_d_torch.shape)
# print(rays_d_torch)
# print(rays_o_torch)
# print(np.allclose(rays_d, rays_d_torch.cpu().numpy()))
# print(np.allclose(rays_o, rays_o_torch.cpu().numpy()))
# # get_rays(_torch) vs get_rays_np
# H, W = 3, 3
# focal = 10
# c2w = np.eye(4)
# c2w[:3, :3] = 2 * c2w[:3, :3]
# # c2w_torch = torch.eye(4)
# # c2w_torch[:3, :3] = 2 * c2w_torch[:3, :3]
# rays_o, rays_d = get_rays_np(H, W, focal, c2w)
# c2w_torch = torch.from_numpy(c2w)
# rays_o_torch, rays_d_torch = get_rays(H, W, focal, c2w_torch)
# print(np.allclose(rays_o, rays_o_torch.cpu().numpy()))
# print(np.allclose(rays_d, rays_d_torch.cpu().numpy())) # Assert fails, values look different.
# print("Numpy version:")
# print(rays_d)
# print("PyTorch version:")
# print(rays_d_torch.cpu().numpy())
# Test backprop for sample_pdf()
bins = torch.rand(2, 4)
weights = torch.rand(2, 4)
weights.requires_grad = True
samples = sample_pdf(bins, weights, 10)
print(samples)