forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prune_worker.py
890 lines (753 loc) · 36.1 KB
/
prune_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
import numpy as np
from ..core import Registry
from ..common import get_logger
__all__ = ["PRUNE_WORKER", "conv2d", "UnsupportOpError"]
_logger = get_logger(__name__, level=logging.INFO)
PRUNE_WORKER = Registry('prune_worker')
SKIPPED_OPS = ['shape', 'reduce_mean']
# operators in OPS_UNCHANGE_SHAPE will be visited by default worker
# who keep shape of output same with shape of input.
OPS_UNCHANGE_SHAPE = os.getenv('OPS_UNCHANGE_SHAPE', None)
OPS_UNCHANGE_SHAPE = [] if OPS_UNCHANGE_SHAPE is None else OPS_UNCHANGE_SHAPE.strip(
).split(",")
OPS_UNCHANGE_SHAPE += [
'nearest_interp_v2',
'roi_align',
'sigmoid',
'swish',
'pad3d',
'bilinear_interp_v2',
'dropout',
'cast',
'hard_swish',
'hard_sigmoid',
]
class UnsupportOpError(Exception):
pass
class PruneWorker(object):
def __init__(self,
op,
pruned_params,
visited,
skip_stranger=True,
skip_vars=[]):
"""
A wrapper of operator used to infer the information of all the related variables.
Args:
op(Operator): The operator to be pruned.
pruned_params(list): The list to store the information of pruning that infered by worker.
visited(dict): The auxiliary dict to record the visited operators and variables. The key is a encoded string of operator id and variable name.
skip_stranger(bool): Whether to raise exception when visit unregistered operators that not in OPS_UNCHANGE_SHAPE. False means visit all unregistered operators by default waorker. Default: True.
skip_vars(list<str>): The variables in 'skip_vars' and their relatives will be skipped. Default: [].
Return: A instance of PruneWorker.
"""
self.op = op
self.pruned_params = pruned_params
self.visited = visited
self.skip_stranger = skip_stranger
self.ops_unsupported = os.getenv('OPS_UNSUPPORTED', None)
self.ops_unsupported = [] if self.ops_unsupported is None else self.ops_unsupported.strip(
).split(",")
self.skip_vars = skip_vars
def prune(self, var, pruned_axis, pruned_idx):
"""
Infer the shape of variables related with current operator, predecessor and successor.
It will search the graph to find all varibles related with `var` and record the information of pruning.
Args:
var(Variable): The root variable of searching. It can be the input or output of current operator.
pruned_axis(int): The axis to be pruned of root variable.
pruned_idx(int): The indices to be pruned in `pruned_axis` of root variable.
"""
if var.name() in self.skip_vars:
raise UnsupportOpError("Variable {} was skipped.".format(var.name(
)))
if self._visit(var, pruned_axis):
self._prune(var, pruned_axis, pruned_idx)
def _visit(self, var, pruned_axis):
key = "_".join([str(self.op.idx()), var.name()])
key = "_".join([key, self.op.all_inputs()[0].name()])
if pruned_axis not in self.visited:
self.visited[pruned_axis] = {}
if key in self.visited[pruned_axis]:
return False
else:
self.visited[pruned_axis][key] = True
return True
def _visit_and_search(self, var, axis, transforms):
self._visit(var, axis)
if var.name() in self.skip_vars:
raise UnsupportOpError("Variable {} was skipped.".format(var.name(
)))
pre_ops = var.inputs()
for op in pre_ops:
self._prune_op(op, var, axis, transforms)
next_ops = var.outputs()
for op in next_ops:
self._prune_op(op, var, axis, transforms)
def _prune(self, var, pruned_axis, pruned_idx):
raise NotImplementedError('Abstract method.')
def _prune_op(self, op, var, pruned_axis, pruned_idx, visited=None):
if op.type().endswith("_grad"):
return
if visited is not None:
self.visited = visited
if op.type() in self.ops_unsupported:
raise UnsupportOpError("Unsupported operator named {}".format(
op.type()))
cls = PRUNE_WORKER.get(op.type())
if cls is None:
if op.type() in SKIPPED_OPS:
return
if op.type() in OPS_UNCHANGE_SHAPE or not self.skip_stranger:
cls = PRUNE_WORKER.get("default_worker")
else:
raise UnsupportOpError("Unsupported operator named {}".format(
op.type()))
_logger.debug("\nfrom: {}\nto: {}\npruned_axis: {}; var: {}\ntrans: {}".
format(self.op, op, pruned_axis, var.name(), pruned_idx))
_logger.debug(
f"visit {op.type()} by var [{var.name()}] on axis [{pruned_axis}];\t visited={self.visited}\n"
)
worker = cls(op, self.pruned_params, self.visited, self.skip_stranger)
worker.skip_vars = self.skip_vars
worker.prune(var, pruned_axis, pruned_idx)
def append_pruned_vars(self, var, axis, transforms):
self.pruned_params.append((var, axis, transforms, self.op))
@PRUNE_WORKER.register
class conv2d(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(conv2d, self).__init__(op, pruned_params, visited, skip_stranger)
def _is_depthwise_conv(self, op):
data_format = self.op.attr("data_format")
channel_axis = 1
if data_format == "NHWC":
channel_axis = 3
filter_shape = self.op.inputs("Filter")[0].shape()
input_shape = self.op.inputs("Input")[0].shape()
num_channels = input_shape[channel_axis]
groups = self.op.attr("groups")
num_filters = filter_shape[0]
return (num_channels == groups and num_channels != 1 and
num_filters % num_channels == 0)
def _prune(self, var, pruned_axis, pruned_idx):
if self._is_depthwise_conv(self.op):
_logger.debug(f"Meet conv2d who is depthwise conv2d actually.")
worker = depthwise_conv2d(
self.op,
self.pruned_params,
visited=self.visited,
skip_stranger=self.skip_stranger)
return worker._prune(var, pruned_axis, pruned_idx)
data_format = self.op.attr("data_format")
groups = self.op.attr("groups")
channel_axis = 1
if data_format == "NHWC":
channel_axis = 3
if var in self.op.inputs("Input"):
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.inputs("Filter")[0]
self.append_pruned_vars(filter_var, 1, pruned_idx)
if groups is None or groups == 1:
self._visit_and_search(filter_var, 1, pruned_idx)
elif var in self.op.inputs("Filter"):
assert pruned_axis in [0, 1]
self.append_pruned_vars(var, pruned_axis, pruned_idx)
if groups is None or groups == 1 or pruned_axis == 0:
self._visit_and_search(var, pruned_axis, pruned_idx)
if pruned_axis == 0:
if len(self.op.inputs("Bias")) > 0:
self.append_pruned_vars(
self.op.inputs("Bias"), channel_axis, pruned_idx)
output_var = self.op.outputs("Output")[0]
self._visit_and_search(output_var, channel_axis, pruned_idx)
elif pruned_axis == 1:
input_var = self.op.inputs("Input")[0]
self._visit_and_search(input_var, channel_axis, pruned_idx)
elif var in self.op.outputs("Output"):
assert pruned_axis == channel_axis, "pruned_axis: {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.inputs("Filter")[0]
self._visit(filter_var, 0)
self.append_pruned_vars(filter_var, 0, pruned_idx)
self._visit_and_search(filter_var, 0, pruned_idx)
if len(self.op.inputs("Bias")) > 0:
self.append_pruned_vars(
self.op.inputs("Bias")[0], channel_axis, pruned_idx)
@PRUNE_WORKER.register
class conv2d_transpose(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(conv2d_transpose, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
data_format = self.op.attr("data_format")
channel_axis = 1
if data_format == "NHWC":
channel_axis = 3
if var in self.op.inputs("Input"):
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.inputs("Filter")[0]
self._visit(filter_var, 0)
self.append_pruned_vars(filter_var, 0, pruned_idx)
self._visit_and_search(filter_var, 0, pruned_idx)
elif var in self.op.inputs("Filter"):
_logger.warn("Skip pruning output channels of conv2d_transpose!")
return
elif var in self.op.outputs("Output"):
assert pruned_axis == channel_axis, "pruned_axis: {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.inputs("Filter")[0]
self._visit(filter_var, 1)
self.append_pruned_vars(filter_var, 1, pruned_idx)
self._visit_and_search(filter_var, 1, pruned_idx)
if len(self.op.inputs("Bias")) > 0:
self.append_pruned_vars(
self.op.inputs("Bias")[0], channel_axis, pruned_idx)
output_var = self.op.outputs("Output")[0]
self._visit_and_search(output_var, channel_axis, pruned_idx)
@PRUNE_WORKER.register
class batch_norm(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(batch_norm, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if (var not in self.op.outputs("Y")) and (
var not in self.op.inputs("X")):
return
if var in self.op.outputs("Y"):
in_var = self.op.inputs("X")[0]
self._visit_and_search(in_var, pruned_axis, pruned_idx)
for param in ["Scale", "Bias", "Mean", "Variance"]:
param_var = self.op.inputs(param)[0]
self._visit_and_search(param_var, 0, pruned_idx)
self.append_pruned_vars(param_var, 0, pruned_idx)
out_var = self.op.outputs("Y")[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class sync_batch_norm(batch_norm):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(sync_batch_norm, self).__init__(op, pruned_params, visited,
skip_stranger)
class elementwise_op(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(elementwise_op, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
axis = self.op.attr("axis")
if axis == -1:
x = self.op.inputs("X")[0]
y = self.op.inputs("Y")[0]
axis = len(x.shape()) - len(y.shape())
if var in self.op.outputs("Out"):
for name in ["X", "Y"]:
actual_axis = pruned_axis
if name == "Y":
actual_axis = pruned_axis - axis
in_var = self.op.inputs(name)[0]
if len(in_var.shape()) == 1 and in_var.shape()[0] == 1:
continue
# for bias
if name == "Y" and actual_axis >= 0 and not (
len(in_var.shape()) == 1 and in_var.shape()[0] == 1):
self.append_pruned_vars(in_var, actual_axis, pruned_idx)
self._visit_and_search(in_var, actual_axis, pruned_idx)
else:
if var in self.op.inputs("X"):
in_var = self.op.inputs("Y")[0]
y_pruned_axis = pruned_axis
if len(in_var.shape()) != len(var.shape()):
assert (len(var.shape()) > len(in_var.shape()))
if axis == -1:
axis = len(var.shape()) - len(in_var.shape())
y_pruned_axis = pruned_axis - axis
if y_pruned_axis >= 0 and not (len(in_var.shape()) == 1 and
in_var.shape()[0] == 1):
self.append_pruned_vars(in_var, y_pruned_axis, pruned_idx)
self._visit_and_search(in_var, y_pruned_axis, pruned_idx)
elif var in self.op.inputs("Y"):
in_var = self.op.inputs("X")[0]
if len(in_var.shape()) != len(var.shape()):
assert (len(var.shape()) < len(in_var.shape()))
pruned_axis = pruned_axis + axis
if pruned_axis <= len(in_var.shape()):
self._visit_and_search(in_var, pruned_axis, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class elementwise_add(elementwise_op):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(elementwise_add, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class elementwise_sub(elementwise_op):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(elementwise_sub, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class elementwise_mul(elementwise_op):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(elementwise_mul, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class activation(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(activation, self).__init__(op, pruned_params, visited,
skip_stranger)
self.input_name = "X"
self.output_name = "Out"
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.outputs(self.output_name):
in_var = self.op.inputs(self.input_name)[0]
self._visit_and_search(in_var, pruned_axis, pruned_idx)
if var in self.op.inputs(self.input_name):
out_var = self.op.outputs(self.output_name)[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class default_worker(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(default_worker, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.all_outputs():
for in_var in self.op.all_inputs():
if len(in_var.shape()) == len(var.shape()):
self._visit_and_search(in_var, pruned_axis, pruned_idx)
for out_var in self.op.all_outputs():
if len(out_var.shape()) == len(var.shape()):
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class uniform_random_batch_size_like(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(uniform_random_batch_size_like, self).__init__(
op, pruned_params, visited, skip_stranger)
self.input_name = "Input"
self.output_name = "Out"
@PRUNE_WORKER.register
class bilinear_interp(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(bilinear_interp, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class nearest_interp(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(nearest_interp, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class relu(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(relu, self).__init__(op, pruned_params, visited, skip_stranger)
@PRUNE_WORKER.register
class leaky_relu(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(leaky_relu, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class floor(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(floor, self).__init__(op, pruned_params, visited, skip_stranger)
@PRUNE_WORKER.register
class relu6(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(relu6, self).__init__(op, pruned_params, visited, skip_stranger)
@PRUNE_WORKER.register
class pool2d(activation):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(pool2d, self).__init__(op, pruned_params, visited, skip_stranger)
@PRUNE_WORKER.register
class sum(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(sum, self).__init__(op, pruned_params, visited, skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.outputs("Out"):
for in_var in self.op.inputs("X"):
self._visit_and_search(in_var, pruned_axis, pruned_idx)
elif var in self.op.inputs("X"):
for in_var in self.op.inputs("X"):
if in_var != var:
self._visit_and_search(in_var, pruned_axis, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class split(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(split, self).__init__(op, pruned_params, visited, skip_stranger)
self.in_var = op.inputs("X")[0]
self.out_vars = op.outputs("Out")
self.axis = op.attr("axis")
self.num = op.attr("num")
def _prune(self, var, pruned_axis, transforms):
if var == self.in_var:
if pruned_axis != self.axis:
for out_var in self.out_vars:
self._visit_and_search(out_var, pruned_axis, transforms)
else:
raise UnsupportOpError(
"Unsupport pruning input of split operator directly.")
elif var in self.out_vars:
if pruned_axis != self.axis:
self._visit_and_search(self.in_var, pruned_axis, transforms)
else:
trans = {
"src_start": 0,
"src_end": var.shape()[pruned_axis],
"target_start": 0,
"target_end": self.in_var.shape()[pruned_axis],
"target_len": self.in_var.shape()[pruned_axis]
}
self._visit_and_search(self.in_var, pruned_axis,
transforms + [trans])
for out_var in self.out_vars:
if var != out_var:
self._visit_and_search(out_var, pruned_axis, transforms)
@PRUNE_WORKER.register
class depthwise_conv2d(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(depthwise_conv2d, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, transforms):
_filter = self.op.inputs("Filter")[0]
_out = self.op.outputs("Output")[0]
_in_var = self.op.inputs("Input")[0]
_groups = self.op.attr("groups")
data_format = self.op.attr("data_format")
channel_axis = 1
if data_format == "NHWC":
channel_axis = 3
if var == _in_var:
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}".format(
pruned_axis)
# pruning number of filters
assert (_filter.shape()[0] % _groups == 0)
repeat = int(_filter.shape()[0] / _groups)
self.append_pruned_vars(_filter, 0, transforms + [{
"repeat": repeat
}])
# kernel_number * groups will be pruned by reducing groups
self.append_pruned_vars(_filter, 1, transforms)
self._visit_and_search(_filter, 0, transforms + [{
"repeat": repeat
}])
# It will not pruning number of kernels in depthwise conv2d,
# so it is not neccesary to search succeed operators.
# self._visit_and_search(_filter, 1, transforms)
self._visit(_filter, 1)
self._visit_and_search(_out, channel_axis, transforms + [{
"repeat": repeat
}])
elif var == _filter:
assert pruned_axis == 0, "The filter of depthwise conv2d can only be pruned at axis 0."
self.append_pruned_vars(_filter, 1, transforms)
self._visit_and_search(_in_var, channel_axis, transforms)
self._visit_and_search(_out, channel_axis, transforms)
elif var == _out:
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}".format(
pruned_axis)
self.append_pruned_vars(_filter, 0, transforms)
self.append_pruned_vars(_filter, 1, transforms)
self._visit_and_search(_filter, 0, transforms)
# It will not pruning number of kernels in depthwise conv2d,
# so it is not neccesary to search succeed operators.
# self._visit_and_search(_filter, 1, transforms)
self._visit(_filter, 1)
self._visit_and_search(_in_var, channel_axis, transforms)
@PRUNE_WORKER.register
class mul(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(mul, self).__init__(op, pruned_params, visited, skip_stranger)
def _prune(self, var, pruned_axis, trans):
x_num_col_dims = self.op.attr("x_num_col_dims")
y_num_col_dims = self.op.attr("y_num_col_dims")
x = self.op.inputs("X")[0]
y = self.op.inputs("Y")[0]
out = self.op.outputs("Out")[0]
x_shape = x.shape()
y_shape = y.shape()
if var == x:
if y_num_col_dims > 1 and pruned_axis >= x_num_col_dims:
raise UnsupportOpError(
"Unsupport pruning x of mul when y_num_col_dims > 1 and pruned_axis >= x_num_col_dims"
)
tile = 1
repeat = 1
if pruned_axis < x_num_col_dims:
for i in range(0, pruned_axis):
tile *= x_shape[i]
for i in range(pruned_axis + 1, x_num_col_dims):
repeat *= x_shape[i]
self.append_pruned_vars(out, 0, trans + [{
"tile": tile,
"repeat": repeat
}])
self._visit_and_search(out, 0, trans + [{
"tile": tile,
"repeat": repeat
}])
else:
for i in range(x_num_col_dims, pruned_axis):
tile *= x_shape[i]
for i in range(pruned_axis + 1, len(x_shape)):
repeat *= x_shape[i]
self.append_pruned_vars(y, 0, trans + [{
"tile": tile,
"repeat": repeat
}])
self._visit_and_search(y, 0, trans + [{
"tile": tile,
"repeat": repeat
}])
elif var == y:
if (pruned_axis < y_num_col_dims) and (
1 < len(x_shape) - x_num_col_dims):
raise UnsupportOpError(
"Unsupport pruning y of mul when pruned_axis < y_num_col_dims and 1 < len(x_shape) - x_num_col_dims."
)
tile = 1
repeat = 1
if pruned_axis >= y_num_col_dims:
for i in range(y_num_col_dims, pruned_axis):
tile *= y_shape[i]
for i in range(pruned_axis + 1, len(y_shape)):
repeat *= y_shape[i]
self.append_pruned_vars(out, 1, trans + [{
"tile": tile,
"repeat": repeat
}])
self._visit_and_search(out, 1, trans + [{
"tile": tile,
"repeat": repeat
}])
else:
for i in range(0, pruned_axis):
tile *= y_shape[i]
for i in range(pruned_axis + 1, y_num_col_dims):
repeat *= y_shape[i]
self.append_pruned_vars(x,
len(x_shape) - 1, trans + [{
"tile": tile,
"repeat": repeat
}])
self._visit_and_search(x,
len(x_shape) - 1, trans + [{
"tile": tile,
"repeat": repeat
}])
elif var == out:
if (pruned_axis == 0 and x_num_col_dims != 1) or (
pruned_axis == 1 and (len(y_shape) - y_num_col_dims) != 1):
raise UnsupportOpError(
"Unsupport pruning out of mul when pruned_axis={}; x_num_col_dims: {}; y_num_col_dims: {}; y_shape: {}.".
format(pruned_axis, x_num_col_dims, y_num_col_dims,
y_shape))
if pruned_axis == 0:
self.append_pruned_vars(x, 0, trans)
self._visit_and_search(x, 0, trans)
elif pruned_axis == 1:
self.append_pruned_vars(y, len(y_shape) - 1, trans)
self._visit_and_search(y, len(y_shape) - 1, trans)
@PRUNE_WORKER.register
class matmul(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(matmul, self).__init__(op, pruned_params, visited, skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
x = self.op.inputs("X")[0]
y = self.op.inputs("Y")[0]
out = self.op.outputs("Out")[0]
x_shape_len = len(x.shape())
y_shape_len = len(y.shape())
mappings = []
if x_shape_len == 1 and y_shape_len == 1:
mappings = [(0, 0, 0)]
elif x_shape_len == 1 and y_shape_len == 2:
mappings = [(0, 0, -1), (-1, 1, 0)]
elif x_shape_len == 2 and y_shape_len == 2:
mappings = [(0, -1, 0), (1, 0, -1), (-1, 1, 1)]
elif x_shape_len == 3 and y_shape_len == 1:
mappings = [(1, -1, 1), (2, 0, -1)]
elif x_shape_len == 2 and y_shape_len == 3:
mappings = [(0, -1, 1), (1, 1, -1), (-1, 2, 2)]
elif x_shape_len >= 3 and y_shape_len >= 3:
mappings = [(x_shape_len - 2, -1, x_shape_len - 2),
(x_shape_len - 1, x_shape_len - 2, -1),
(-1, x_shape_len - 1, x_shape_len - 1)]
if var == x:
for x_i, y_i, out_i in mappings:
if pruned_axis == x_i:
if y_i != -1:
self.append_pruned_vars(y, y_i, pruned_idx)
self._visit_and_search(y, y_i, pruned_idx)
if out_i != -1:
#self.append_pruned_vars(out, out_i, pruned_idx)
self._visit_and_search(out, out_i, pruned_idx)
break
if var == y:
for x_i, y_i, out_i in mappings:
if pruned_axis == y_i:
if x_i != -1:
self.append_pruned_vars(x, x_i, pruned_idx)
self._visit_and_search(x, x_i, pruned_idx)
if out_i != -1:
#self.append_pruned_vars(out, out_i, pruned_idx)
self._visit_and_search(out, out_i, pruned_idx)
break
if var == out:
for x_i, y_i, out_i in mappings:
if pruned_axis == out_i:
if x_i != -1:
self.append_pruned_vars(x, x_i, pruned_idx)
self._visit_and_search(x, x_i, pruned_idx)
if y_i != -1:
self.append_pruned_vars(y, y_i, pruned_idx)
self._visit_and_search(y, y_i, pruned_idx)
break
@PRUNE_WORKER.register
class matmul_v2(matmul):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(matmul_v2, self).__init__(op, pruned_params, visited,
skip_stranger)
@PRUNE_WORKER.register
class scale(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(scale, self).__init__(op, pruned_params, visited, skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("X"):
out_var = self.op.outputs("Out")[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
elif var in self.op.outputs("Out"):
in_var = self.op.inputs("X")[0]
self._visit_and_search(in_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class momentum(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(momentum, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("Param"):
velocity_var = self.op.inputs("Velocity")[0]
self.append_pruned_vars(velocity_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class adam(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(adam, self).__init__(op, pruned_params, visited, skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("Param"):
moment1_var = self.op.inputs("Moment1")[0]
self.append_pruned_vars(moment1_var, pruned_axis, pruned_idx)
moment2_var = self.op.inputs("Moment2")[0]
self.append_pruned_vars(moment2_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class affine_channel(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(affine_channel, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, pruned_idx):
if (var not in self.op.outputs("Out")) and (
var not in self.op.inputs("X")):
return
if var in self.op.outputs("Out"):
in_var = self.op.inputs("X")[0]
self._visit_and_search(in_var, pruned_axis, pruned_idx)
for param in ["Scale", "Bias"]:
param_var = self.op.inputs(param)[0]
self._visit_and_search(param_var, 0, pruned_idx)
self.append_pruned_vars(param_var, 0, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit_and_search(out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class flatten_contiguous_range(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(flatten_contiguous_range, self).__init__(op, pruned_params,
visited, skip_stranger)
def _prune(self, var, pruned_axis, transforms):
start_axis = self.op.attr("start_axis")
stop_axis = self.op.attr("stop_axis")
if var in self.op.inputs("X"):
out_var = self.op.outputs("Out")[0]
in_var = self.op.inputs("X")[0]
stride = 1
out_pruned_axis = pruned_axis
if pruned_axis >= start_axis and pruned_axis <= stop_axis:
out_pruned_axis = start_axis
for i in range(pruned_axis + 1, stop_axis + 1):
stride *= in_var.shape()[i]
elif pruned_axis > stop_axis:
out_pruned_axis = start_axis + pruned_axis - stop_axis
self._visit(in_var, pruned_axis)
transform = {'stride': stride}
self._visit_and_search(out_var, out_pruned_axis,
transforms + [transform])
@PRUNE_WORKER.register
class squeeze2(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(squeeze2, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, transforms):
axes = self.op.attr("axes")
in_var = self.op.inputs("X")[0]
out_var = self.op.outputs("Out")[0]
if axes is None or len(axes) == 0:
axes = [i for i, axis in enumerate(in_var.shape()) if axis == 1]
squeeze_num = 0
if in_var == var:
for axis in axes:
assert axis != pruned_axis, "Can not pruning axis that will be squeezed."
if axis < pruned_axis:
squeeze_num += 1
pruned_axis -= squeeze_num
self._visit_and_search(out_var, pruned_axis, transforms)
elif out_var == var:
for axis in axes:
if axis <= pruned_axis:
pruned_axis += 1
self._visit_and_search(in_var, pruned_axis, transforms)
@PRUNE_WORKER.register
class unsqueeze2(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(unsqueeze2, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, transforms):
axes = self.op.attr("axes")
in_var = self.op.inputs("X")[0]
out_var = self.op.outputs("Out")[0]
assert (axes is not None)
squeeze_num = 0
if in_var == var:
for axis in axes:
if axis <= pruned_axis:
pruned_axis += 1
self._visit_and_search(out_var, pruned_axis, transforms)
elif out_var == var:
for axis in axes:
if axis < pruned_axis:
squeeze_num += 1
pruned_axis -= squeeze_num
self._visit_and_search(in_var, pruned_axis, transforms)
@PRUNE_WORKER.register
class average_accumulates(PruneWorker):
def __init__(self, op, pruned_params, visited, skip_stranger):
super(average_accumulates, self).__init__(op, pruned_params, visited,
skip_stranger)
def _prune(self, var, pruned_axis, transforms):
in_var = self.op.inputs("param")[0]
out_var_1 = self.op.outputs("out_sum_1")[0]
out_var_2 = self.op.outputs("out_sum_2")[0]
out_var_3 = self.op.outputs("out_sum_3")[0]
if in_var == var:
self.append_pruned_vars(out_var_1, pruned_axis, transforms)
self.append_pruned_vars(out_var_2, pruned_axis, transforms)
self.append_pruned_vars(out_var_3, pruned_axis, transforms)