forked from mossmann/gnuradio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpfb.py
473 lines (397 loc) · 19.4 KB
/
pfb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#!/usr/bin/env python
#
# Copyright 2009,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import optfir, math
from gnuradio import gr, fft
import filter_swig as filter
try:
from gnuradio import blocks
except ImportError:
import blocks_swig as blocks
class channelizer_ccf(gr.hier_block2):
'''
Make a Polyphase Filter channelizer (complex in, complex out, floating-point taps)
This simplifies the interface by allowing a single input stream to connect to this block.
It will then output a stream for each channel.
'''
def __init__(self, numchans, taps=None, oversample_rate=1, atten=100):
gr.hier_block2.__init__(self, "pfb_channelizer_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(numchans, numchans, gr.sizeof_gr_complex))
self._nchans = numchans
self._oversample_rate = oversample_rate
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, self._nchans)
self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps,
self._oversample_rate)
self.connect(self, self.s2ss)
for i in xrange(self._nchans):
self.connect((self.s2ss,i), (self.pfb,i))
self.connect((self.pfb,i), (self,i))
def set_channel_map(self, newmap):
self.pfb.set_channel_map(newmap)
def set_taps(self, taps):
self.pfb.set_taps(taps)
def taps(self):
return self.pfb.taps()
class interpolator_ccf(gr.hier_block2):
'''
Make a Polyphase Filter interpolator (complex in, complex out, floating-point taps)
The block takes a single complex stream in and outputs a single complex
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, interp, taps=None, atten=100):
gr.hier_block2.__init__(self, "pfb_interpolator_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(1, 1, gr.sizeof_gr_complex))
self._interp = interp
self._taps = taps
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.99
made = False
while not made:
try:
self._taps = optfir.low_pass(self._interp, self._interp, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_interpolator_ccf(self._interp, self._taps)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
def set_taps(self, taps):
self.pfb.set_taps(taps)
def declare_sample_delay(self, delay):
self.pfb.declare_sample_delay(delay)
class decimator_ccf(gr.hier_block2):
'''
Make a Polyphase Filter decimator (complex in, complex out, floating-point taps)
This simplifies the interface by allowing a single input stream to connect to this block.
It will then output a stream that is the decimated output stream.
'''
def __init__(self, decim, taps=None, channel=0, atten=100,
use_fft_rotators=True, use_fft_filters=True):
gr.hier_block2.__init__(self, "pfb_decimator_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(1, 1, gr.sizeof_gr_complex))
self._decim = decim
self._channel = channel
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(1, self._decim, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, self._decim)
self.pfb = filter.pfb_decimator_ccf(self._decim, self._taps, self._channel,
use_fft_rotators, use_fft_filters)
self.connect(self, self.s2ss)
for i in xrange(self._decim):
self.connect((self.s2ss,i), (self.pfb,i))
self.connect(self.pfb, self)
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_channel(self, chan):
self.pfb.set_channel(chan)
def declare_sample_delay(self, delay):
self.pfb.declare_sample_delay(delay)
class arb_resampler_ccf(gr.hier_block2):
'''
Convenience wrapper for the polyphase filterbank arbitrary resampler.
The block takes a single complex stream in and outputs a single complex
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, rate, taps=None, flt_size=32, atten=100):
gr.hier_block2.__init__(self, "pfb_arb_resampler_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
self._rate = rate
self._size = flt_size
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the output signal
# If rate >= 1, we need to prevent images in the output,
# so we have to filter it to less than half the channel
# width of 0.5. If rate < 1, we need to filter to less
# than half the output signal's bw to avoid aliasing, so
# the half-band here is 0.5*rate.
percent = 0.80
if(self._rate < 1):
halfband = 0.5*self._rate
bw = percent*halfband
tb = (percent/2.0)*halfband
ripple = 0.1
# As we drop the bw factor, the optfir filter has a harder time converging;
# using the firdes method here for better results.
self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten,
filter.firdes.WIN_BLACKMAN_HARRIS)
else:
halfband = 0.5
bw = percent*halfband
tb = (percent/2.0)*halfband
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_arb_resampler_ccf(self._rate, self._taps, self._size)
#print "PFB has %d taps\n" % (len(self._taps),)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
# Note -- set_taps not implemented in base class yet
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_rate(self, rate):
self.pfb.set_rate(rate)
def declare_sample_delay(self, delay):
self.pfb.declare_sample_delay(delay)
class arb_resampler_fff(gr.hier_block2):
'''
Convenience wrapper for the polyphase filterbank arbitrary resampler.
The block takes a single float stream in and outputs a single float
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, rate, taps=None, flt_size=32, atten=100):
gr.hier_block2.__init__(self, "pfb_arb_resampler_fff",
gr.io_signature(1, 1, gr.sizeof_float), # Input signature
gr.io_signature(1, 1, gr.sizeof_float)) # Output signature
self._rate = rate
self._size = flt_size
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
# If rate >= 1, we need to prevent images in the output,
# so we have to filter it to less than half the channel
# width of 0.5. If rate < 1, we need to filter to less
# than half the output signal's bw to avoid aliasing, so
# the half-band here is 0.5*rate.
percent = 0.80
if(self._rate < 1):
halfband = 0.5*self._rate
bw = percent*halfband
tb = (percent/2.0)*halfband
ripple = 0.1
# As we drop the bw factor, the optfir filter has a harder time converging;
# using the firdes method here for better results.
self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten,
filter.firdes.WIN_BLACKMAN_HARRIS)
else:
halfband = 0.5
bw = percent*halfband
tb = (percent/2.0)*halfband
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_arb_resampler_fff(self._rate, self._taps, self._size)
#print "PFB has %d taps\n" % (len(self._taps),)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
# Note -- set_taps not implemented in base class yet
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_rate(self, rate):
self.pfb.set_rate(rate)
def declare_sample_delay(self, delay):
self.pfb.declare_sample_delay(delay)
class arb_resampler_ccc(gr.hier_block2):
'''
Convenience wrapper for the polyphase filterbank arbitrary resampler.
The block takes a single complex stream in and outputs a single complex
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, rate, taps=None, flt_size=32, atten=100):
gr.hier_block2.__init__(self, "pfb_arb_resampler_ccc",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
self._rate = rate
self._size = flt_size
if (taps is not None) and (len(taps) > 0):
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
#self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten)
made = False
while not made:
try:
self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_arb_resampler_ccc(self._rate, self._taps, self._size)
#print "PFB has %d taps\n" % (len(self._taps),)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
# Note -- set_taps not implemented in base class yet
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_rate(self, rate):
self.pfb.set_rate(rate)
def declare_sample_delay(self, delay):
self.pfb.declare_sample_delay(delay)
class channelizer_hier_ccf(gr.hier_block2):
"""
Make a Polyphase Filter channelizer (complex in, complex out, floating-point taps)
Args:
n_chans - The number of channels to split into.
n_filterbanks - The number of filterbank blocks to use (default=2).
taps: The taps to use. If this is `None` then taps are generated using optfir.low_pass.
outchans - Which channels to output streams for (a list of integers) (default is all channels).
atten: Stop band attenuation.
bw: The fraction of the channel you want to keep.
tb: Transition band with as fraction of channel width.
ripple: Pass band ripple in dB.
"""
def __init__(self, n_chans, n_filterbanks=1, taps=None, outchans=None,
atten=100, bw=1.0, tb=0.2, ripple=0.1):
if n_filterbanks > n_chans:
n_filterbanks = n_chans
if outchans is None:
outchans = range(n_chans)
gr.hier_block2.__init__(
self, "pfb_channelizer_hier_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(len(outchans), len(outchans), gr.sizeof_gr_complex))
if taps is None:
taps = optfir.low_pass(1, n_chans, bw, bw+tb, ripple, atten)
taps = list(taps)
extra_taps = int(math.ceil(1.0*len(taps)/n_chans)*n_chans - len(taps))
taps = taps + [0] * extra_taps
# Make taps for each channel
chantaps = [list(reversed(taps[i: len(taps): n_chans])) for i in range(0, n_chans)]
# Convert the input stream into a stream of vectors.
self.s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, n_chans)
# Create a mapping to separate out each filterbank (a group of channels to be processed together)
# And a list of sets of taps for each filterbank.
low_cpp = int(n_chans/n_filterbanks)
extra = n_chans - low_cpp*n_filterbanks
cpps = [low_cpp+1]*extra + [low_cpp]*(n_filterbanks-extra)
splitter_mapping = []
filterbanktaps = []
total = 0
for cpp in cpps:
splitter_mapping.append([(0, i) for i in range(total, total+cpp)])
filterbanktaps.append(chantaps[total: total+cpp])
total += cpp
assert(total == n_chans)
# Split the stream of vectors in n_filterbanks streams of vectors.
self.splitter = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], splitter_mapping)
# Create the filterbanks
self.fbs = [filter.filterbank_vcvcf(taps) for taps in filterbanktaps]
# Combine the streams of vectors back into a single stream of vectors.
combiner_mapping = [[]]
for i, cpp in enumerate(cpps):
for j in range(cpp):
combiner_mapping[0].append((i, j))
self.combiner = blocks.vector_map(gr.sizeof_gr_complex, cpps, combiner_mapping)
# Add the final FFT to the channelizer.
self.fft = fft.fft_vcc(n_chans, forward=True, window=[1.0]*n_chans)
# Select the desired channels
if outchans != range(n_chans):
selector_mapping = [[(0, i) for i in outchans]]
self.selector = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], selector_mapping)
# Convert stream of vectors to a normal stream.
self.v2ss = blocks.vector_to_streams(gr.sizeof_gr_complex, len(outchans))
self.connect(self, self.s2v, self.splitter)
for i in range(0, n_filterbanks):
self.connect((self.splitter, i), self.fbs[i], (self.combiner, i))
self.connect(self.combiner, self.fft)
if outchans != range(n_chans):
self.connect(self.fft, self.selector, self.v2ss)
else:
self.connect(self.fft, self.v2ss)
for i in range(0, len(outchans)):
self.connect((self.v2ss, i), (self, i))