forked from DEAP/deap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiplexer.py
99 lines (80 loc) · 3.22 KB
/
multiplexer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# This file is part of EAP.
#
# EAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# EAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with EAP. If not, see <http://www.gnu.org/licenses/>.
import random
import operator
import numpy
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from deap import gp
def if_then_else(condition, out1, out2):
return out1 if condition else out2
# Initialize Multiplexer problem input and output vectors
MUX_SELECT_LINES = 3
MUX_IN_LINES = 2 ** MUX_SELECT_LINES
MUX_TOTAL_LINES = MUX_SELECT_LINES + MUX_IN_LINES
# input : [A0 A1 A2 D0 D1 D2 D3 D4 D5 D6 D7] for a 8-3 mux
inputs = [[0] * MUX_TOTAL_LINES for i in range(2 ** MUX_TOTAL_LINES)]
outputs = [None] * (2 ** MUX_TOTAL_LINES)
for i in range(2 ** MUX_TOTAL_LINES):
value = i
divisor = 2 ** MUX_TOTAL_LINES
# Fill the input bits
for j in range(MUX_TOTAL_LINES):
divisor /= 2
if value >= divisor:
inputs[i][j] = 1
value -= divisor
# Determine the corresponding output
indexOutput = MUX_SELECT_LINES
for j, k in enumerate(inputs[i][:MUX_SELECT_LINES]):
indexOutput += k * 2**j
outputs[i] = inputs[i][indexOutput]
pset = gp.PrimitiveSet("MAIN", MUX_TOTAL_LINES, "IN")
pset.addPrimitive(operator.and_, 2)
pset.addPrimitive(operator.or_, 2)
pset.addPrimitive(operator.not_, 1)
pset.addPrimitive(if_then_else, 3)
pset.addTerminal(1)
pset.addTerminal(0)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("expr", gp.genFull, pset=pset, min_=2, max_=4)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
def evalMultiplexer(individual):
func = toolbox.compile(expr=individual)
return sum(func(*in_) == out for in_, out in zip(inputs, outputs)),
toolbox.register("evaluate", evalMultiplexer)
toolbox.register("select", tools.selTournament, tournsize=7)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genGrow, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
def main():
# random.seed(10)
pop = toolbox.population(n=40)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.8, 0.1, 40, stats, halloffame=hof)
return pop, stats, hof
if __name__ == "__main__":
main()