forked from h2oai/h2o-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh2o_cmd.py
549 lines (453 loc) · 21.9 KB
/
h2o_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import os, json, unittest, time, shutil, sys, socket
import h2o
import h2o_browse as h2b, h2o_rf as h2f, h2o_exec, h2o_gbm, h2o_util
def parseS3File(node=None, bucket=None, filename=None, keyForParseResult=None,
timeoutSecs=20, retryDelaySecs=2, pollTimeoutSecs=30, **kwargs):
''' Parse a file stored in S3 bucket'''
if not bucket : raise Exception('No S3 bucket')
if not filename: raise Exception('No filename in bucket')
if not node: node = h2o.nodes[0]
import_result = node.import_s3(bucket)
s3_key = [f['key'] for f in import_result['succeeded'] if f['file'] == filename ][0]
if keyForParseResult is None:
myKeyForParseResult = s3_key + '.hex'
else:
myKeyForParseResult = keyForParseResult
p = node.parse(s3_key, myKeyForParseResult,
timeoutSecs, retryDelaySecs,
pollTimeoutSecs=pollTimeoutSecs, **kwargs)
# do SummaryPage here too, just to get some coverage
node.summary_page(myKeyForParseResult)
return p
# normally we don't want inspect to print during verboseprint. verbose=True to get it
# in specific tests
def runInspect(node=None, key=None, timeoutSecs=30, verbose=False, **kwargs):
if not key: raise Exception('No key for Inspect')
if not node: node = h2o.nodes[0]
a = node.inspect(key, timeoutSecs=timeoutSecs, **kwargs)
if verbose:
print "inspect of %s:" % key, h2o.dump_json(a)
return a
def runSummary(node=None, key=None, timeoutSecs=30, **kwargs):
if not key: raise Exception('No key for Summary')
if not node: node = h2o.nodes[0]
return node.summary_page(key, timeoutSecs=timeoutSecs, **kwargs)
# Not working in H2O yet, but support the test
def runStore2HDFS(node=None, key=None, timeoutSecs=5, **kwargs):
if not key: raise Exception('No key for Inspect')
if not node: node = h2o.nodes[0]
# FIX! currently there is no such thing as a timeout on node.inspect
return node.Store2HDFS(key, **kwargs)
# since we'll be doing lots of execs on a parsed file, not useful to have parse+exec
# retryDelaySecs isn't used,
def runExec(node=None, timeoutSecs=20, **kwargs):
if not node: node = h2o.nodes[0]
# no such thing as GLMView..don't use retryDelaySecs
a = node.exec_query(timeoutSecs, **kwargs)
h2o.check_sandbox_for_errors()
return a
def runKMeans(node=None, parseResult=None, timeoutSecs=20, retryDelaySecs=2, **kwargs):
if not parseResult: raise Exception('No parseResult for KMeans')
if not node: node = h2o.nodes[0]
return node.kmeans(parseResult['destination_key'], None, timeoutSecs, retryDelaySecs, **kwargs)
def runGLM(node=None, parseResult=None, timeoutSecs=20, retryDelaySecs=2, **kwargs):
if not parseResult: raise Exception('No parseResult for GLM')
if not node: node = h2o.nodes[0]
return node.GLM(parseResult['destination_key'],
timeoutSecs, retryDelaySecs, **kwargs)
def runGLMScore(node=None, key=None, model_key=None, timeoutSecs=20, **kwargs):
if not node: node = h2o.nodes[0]
return node.GLMScore(key, model_key, timeoutSecs, **kwargs)
def runGLMGrid(node=None, parseResult=None, timeoutSecs=60, retryDelaySecs=2, **kwargs):
if not parseResult: raise Exception('No parseResult for GLMGrid')
if not node: node = h2o.nodes[0]
# no such thing as GLMGridView..don't use retryDelaySecs
return node.GLMGrid(parseResult['destination_key'], timeoutSecs, **kwargs)
def runPCA(node=None, parseResult=None, timeoutSecs=600, **kwargs):
if not parseResult: raise Exception('No parseResult for PCA')
if not node: node = h2o.nodes[0]
data_key = parseResult['destination_key']
return node.pca(data_key=data_key, timeoutSecs=timeoutSecs, **kwargs)
def runNNetScore(node=None, key=None, model=None, timeoutSecs=600, **kwargs):
if not node: node = h2o.nodes[0]
return node.neural_net_score(key, model, timeoutSecs=timeoutSecs, **kwargs)
def runNNet(node=None, parseResult=None, timeoutSecs=600, **kwargs):
if not parseResult: raise Exception('No parseResult for Neural Net')
if not node: node = h2o.nodes[0]
data_key = parseResult['destination_key']
return node.neural_net(data_key=data_key, timeoutSecs=timeoutSecs, **kwargs)
def runDeepLearning(node=None, parseResult=None, timeoutSecs=600, **kwargs):
if not parseResult: raise Exception('No parseResult for Deep Learning')
if not node: node = h2o.nodes[0]
data_key = parseResult['destination_key']
return node.deep_learning(data_key=data_key, timeoutSecs=timeoutSecs, **kwargs)
def runGBM(node=None, parseResult=None, timeoutSecs=500, **kwargs):
if not parseResult: raise Exception('No parseResult for GBM')
if not node: node = h2o.nodes[0]
data_key = parseResult['destination_key']
return node.gbm(data_key=data_key, timeoutSecs=timeoutSecs, **kwargs)
def runPredict(node=None, data_key=None, model_key=None, timeoutSecs=500, **kwargs):
if not data_key: raise Exception('No data_key for run Predict')
if not node: node = h2o.nodes[0]
return node.generate_predictions(data_key, model_key, timeoutSecs=timeoutSecs,**kwargs)
def runSpeeDRF(node=None, parseResult=None, ntrees=5, max_depth=10, timeoutSecs=20, **kwargs):
if not parseResult: raise Exception("No parseResult for SpeeDRF")
if not node: node = h2o.nodes[0]
Key = parseResult['destination_key']
return node.speedrf(Key, ntrees=ntrees, max_depth=max_depth, timeoutSecs=timeoutSecs, **kwargs)
def runSpeeDRFView(node=None, modelKey=None, timeoutSecs=20, **kwargs):
if not node: node = h2o.nodes[0]
return node.speedrf_view(modelKey=modelKey, timeoutSecs=timeoutSecs, **kwargs)
# rfView can be used to skip the rf completion view
# for creating multiple rf jobs
def runRF(node=None, parseResult=None, trees=5, timeoutSecs=20, **kwargs):
if not parseResult: raise Exception('No parseResult for RF')
if not node: node = h2o.nodes[0]
Key = parseResult['destination_key']
return node.random_forest(Key, trees, timeoutSecs, **kwargs)
def runRFTreeView(node=None, n=None, data_key=None, model_key=None, timeoutSecs=20, **kwargs):
if not node: node = h2o.nodes[0]
return node.random_forest_treeview(n, data_key, model_key, timeoutSecs, **kwargs)
def runGBMView(node=None, model_key=None, timeoutSecs=300, retryDelaySecs=2, **kwargs):
if not node: node = h2o.nodes[0]
if not model_key:
raise Exception("\nNo model_key was supplied to the gbm view!")
gbmView = node.gbm_view(model_key, timeoutSecs=timeoutSecs)
return gbmView
def runNeuralView(node=None, model_key=None, timeoutSecs=300, retryDelaySecs=2, **kwargs):
if not node: node = h2o.nodes[0]
if not model_key:
raise Exception("\nNo model_key was supplied to the neural view!")
neuralView = node.neural_view(model_key, timeoutSecs=timeoutSecs, retryDelaysSecs=retryDelaysecs)
return neuralView
def runPCAView(node=None, modelKey=None, timeoutSecs=300, retryDelaySecs=2, **kwargs):
if not node: node = h2o.nodes[0]
if not modelKey:
raise Exception("\nNo modelKey was supplied to the pca view!")
pcaView = node.pca_view(modelKey, timeoutSecs=timeoutSecs)
return pcaView
def runGLMView(node=None, modelKey=None, timeoutSecs=300, retryDelaySecs=2, **kwargs):
if not node: node = h2o.nodes[0]
if not modelKey:
raise Exception("\nNo modelKey was supplied to the glm view!")
glmView = node.glm_view(modelKey,timeoutSecs=timeoutSecs, retryDelaySecs=retryDelaySecs)
return glmView
def runRFView(node=None, data_key=None, model_key=None, ntree=None,
timeoutSecs=15, retryDelaySecs=2, doSimpleCheck=True,
noPrint=False, **kwargs):
if not node: node = h2o.nodes[0]
# kind of wasteful re-read, but maybe good for testing
rfView = node.random_forest_view(data_key, model_key, ntree=ntree, timeoutSecs=timeoutSecs, **kwargs)
if doSimpleCheck:
h2f.simpleCheckRFView(node, rfView, noPrint=noPrint)
return rfView
def runRFScore(node=None, data_key=None, model_key=None, ntree=None,
timeoutSecs=15, retryDelaySecs=2, doSimpleCheck=True, **kwargs):
if not node: node = h2o.nodes[0]
# kind of wasteful re-read, but maybe good for testing
rfView = node.random_forest_score(data_key, model_key, timeoutSecs, **kwargs)
if doSimpleCheck:
h2f.simpleCheckRFView(node, rfView, noPrint=noPrint)
return rfView
def runStoreView(node=None, timeoutSecs=30, noPrint=None, **kwargs):
if not node: node = h2o.nodes[0]
storeView = node.store_view(timeoutSecs, **kwargs)
if not noPrint:
for s in storeView['keys']:
print "StoreView: key:", s['key']
if 'rows' in s:
h2o.verboseprint("StoreView: rows:", s['rows'], "value_size_bytes:", s['value_size_bytes'])
print node, 'storeView has', len(storeView['keys']), 'keys'
return storeView
def port_live(ip, port):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect((ip,port))
s.shutdown(2)
return True
except:
return False
def wait_for_live_port(ip, port, retries=3):
h2o.verboseprint("Waiting for {0}:{1} {2}times...".format(ip,port,retries))
if not port_live(ip,port):
count = 0
while count < retries:
if port_live(ip,port):
count += 1
else:
count = 0
time.sleep(1)
dot()
if not port_live(ip,port):
raise Exception("[h2o_cmd] Error waiting for {0}:{1} {2}times...".format(ip,port,retries))
# checks the key distribution in the cloud, and prints warning if delta against avg
# is > expected
def checkKeyDistribution():
c = h2o.nodes[0].get_cloud()
nodes = c['nodes']
print "Key distribution post parse, should be balanced"
# get average
totalKeys = 0
for n in nodes:
totalKeys += int(n['num_keys'])
avgKeys = (totalKeys + 0.0)/len(nodes)
# if more than 5% difference from average, print warning
for n in nodes:
print 'num_keys:', n['num_keys'], 'value_size_bytes:', n['value_size_bytes'],\
'name:', n['name']
delta = (abs(avgKeys - int(n['num_keys']))/avgKeys)
if delta > 0.10:
print "WARNING. avgKeys:", avgKeys, "and n['num_keys']:", n['num_keys'], "have >", "%.1f" % (100 * delta), "% delta"
# I use these in testdir_hosts/test_parse_nflx_loop_s3n_hdfs.py
# and testdir_multi_jvm/test_benchmark_import.py
# might be able to use more widely
def columnInfoFromInspect(key, exceptionOnMissingValues=True, **kwargs):
inspect = runInspect(key=key, **kwargs)
num_rows = inspect['numRows']
num_cols = inspect['numCols']
keyNA = 'naCnt'
cols = inspect['cols']
# type
# key
# row_size
# value_size_bytes
# cols
# rows
missingValuesDict = {}
constantValuesDict = {}
enumSizeDict = {}
colNameDict = {}
colTypeDict = {}
# all dictionaries created are keyed by col index
print "Column Summary:"
for k,c in enumerate(cols):
# offset
# base
# scale
# mean
# variance
# enum_domain_size
colNameDict[k] = c['name']
colTypeDict[k] = c['type']
msg = "%s %d" % (c['name'], k)
msg += " type: %s" % c['type']
printMsg = False
if c['type'] == 'Enum':
# enums now have 'NaN' returned for min/max
# if isinstance(c['min'], basestring) or isinstance(c['max'], basestring):
# raise Exception("Didn't expect 'min': %s or 'max': %s to be str or unicode" % (c['min'], c['max']))
cardinality = c['cardinality']
msg += (" cardinality: %d" % cardinality)
# inspect2 doesn't have cardinality but this is equivalent
enumSizeDict[k] = cardinality
printMsg = True
if c[keyNA] != 0:
pct = ((c[keyNA] + 0.0)/ num_rows) * 100
msg += (" %s: %s (%0.1f%s)" % (keyNA, c[keyNA], pct, '%'))
missingValuesDict[k] = c[keyNA]
printMsg = True
if c['min']==c['max'] and (c['type']!='Enum' and c['type']!='enum'):
msg += (" constant value (min=max): %s" % c['min'])
constantValuesDict[k] = c['min']
printMsg = True
# if the naCnt = num_rows, that means it's likely forced NAs..so detect that
if c[keyNA]==num_rows:
msg += (" constant value (na count = num rows): %s" % c['min'])
constantValuesDict[k] = c['min']
printMsg = True
if printMsg: # don't print ints or floats if ok
print msg
if missingValuesDict:
m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
print len(missingValuesDict), "columns with missing values", ", ".join(m)
### raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))
if constantValuesDict:
m = [str(k) + ":" + str(v) for k,v in constantValuesDict.iteritems()]
print len(constantValuesDict), "columns with constant values", ", ".join(m)
print "\n" + key, \
" num_rows:", "{:,}".format(num_rows), \
" num_cols:", "{:,}".format(num_cols)
if missingValuesDict and exceptionOnMissingValues:
m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))
if num_cols != len(colNameDict):
raise Exception("num_cols: %s doesn't agree with len(colNameDict): %s" % (num_cols, len(colNameDict)))
return (missingValuesDict, constantValuesDict, enumSizeDict, colTypeDict, colNameDict)
def infoFromInspect(inspect, csvPathname='none'):
if not inspect:
raise Exception("inspect is empty for infoFromInspect")
# need more info about this dataset for debug
cols = inspect['cols']
# look for nonzero num_missing_values count in each col
keyNA = 'naCnt'
missingValuesList = []
for i, colDict in enumerate(cols):
num_missing_values = colDict[keyNA]
if num_missing_values != 0:
print "%s: col: %d, %s: %d" % (csvPathname, i, keyNA, num_missing_values)
missingValuesList.append(num_missing_values)
# no type per col in inspect2
numCols = inspect['numCols']
numRows = inspect['numRows']
byteSize = inspect['byteSize']
print "\n" + csvPathname, "numCols: %s, numRows: %s, byteSize: %s" % \
(numCols, numRows, byteSize)
return missingValuesList
# summary doesn't have the # of rows
# we need it to see if na count = number of rows. min/max/mean/sigma/zeros then are ignored (undefined?)
# while we're at it, let's cross check numCols
# if we don't pass these extra params, just ignore
def infoFromSummary(summaryResult, noPrint=False, numCols=None, numRows=None):
if not summaryResult:
raise Exception("summaryResult is empty for infoFromSummary")
summaries = summaryResult['summaries']
# what if we didn't get the full # of cols in this summary view?
# I guess the test should deal with that
if 1==0 and numCols and (len(summaries)!=numCols):
raise Exception("Expected numCols: %s cols in summary. Got %s" % (numCols, len(summaries)))
for column in summaries:
colname = column['colname']
coltype = column['type']
nacnt = column['nacnt']
stats = column['stats']
stattype = stats['type']
h2o_exec.checkForBadFP(nacnt, 'nacnt for colname: %s stattype: %s' % (colname, stattype))
if stattype == 'Enum':
cardinality = stats['cardinality']
h2o_exec.checkForBadFP(cardinality, 'cardinality for colname: %s stattype: %s' % (colname, stattype))
else:
mean = stats['mean']
sd = stats['sd']
zeros = stats['zeros']
mins = stats['mins']
maxs = stats['maxs']
pct = stats['pct']
pctile = stats['pctile']
# check for NaN/Infinity in some of these
# apparently we can get NaN in the mean for a numerica col with all NA?
h2o_exec.checkForBadFP(mean, 'mean for colname: %s stattype: %s' % (colname, stattype), nanOkay=True, infOkay=True)
h2o_exec.checkForBadFP(sd, 'sd for colname: %s stattype %s' % (colname, stattype), nanOkay=True, infOkay=True)
h2o_exec.checkForBadFP(zeros, 'zeros for colname: %s stattype %s' % (colname, stattype))
if numRows and (nacnt==numRows):
print "%s is all NAs with type: %s. no checking for min/max/mean/sigma" % (colname, stattype)
else:
if not mins:
print h2o.dump_json(column)
# raise Exception ("Why is min[] empty for a %s col (%s) ? %s %s %s" % (mins, stattype, colname, nacnt, numRows))
print "Why is min[] empty for a %s col (%s) ? %s %s %s" % (mins, stattype, colname, nacnt, numRows)
if not maxs:
# this is failing on maprfs best buy...why? (va only?)
print h2o.dump_json(column)
# raise Exception ("Why is max[] empty for a %s col? (%s) ? %s %s %s" % (maxs, stattype, colname, nacnt, numRows))
print "Why is max[] empty for a %s col? (%s) ? %s %s %s" % (maxs, stattype, colname, nacnt, numRows)
hstart = column['hstart']
hstep = column['hstep']
hbrk = column['hbrk']
hcnt = column['hcnt']
if not noPrint:
print "\n\n************************"
print "colname:", colname
print "coltype:", coltype
print "nacnt:", nacnt
print "stattype:", stattype
if stattype == 'Enum':
print "cardinality:", cardinality
else:
print "mean:", mean
print "sd:", sd
print "zeros:", zeros
print "mins:", mins
print "maxs:", maxs
print "pct:", pct
print "pctile:", pctile
# histogram stuff
print "hstart:", hstart
print "hstep:", hstep
print "hbrk:", hbrk
print "hcnt:", hcnt
def dot():
sys.stdout.write('.')
sys.stdout.flush()
def sleep_with_dot(sec, message=None):
if message:
print message
count = 0
while count < sec:
time.sleep(1)
dot()
count += 1
def createTestTrain(srcKey, trainDstKey, testDstKey, trainPercent,
outputClass=None, outputCol=None, changeToBinomial=False):
# will have to live with random extract. will create variance
print "train: get random", trainPercent
print "test: get remaining", 100 - trainPercent
if changeToBinomial:
print "change class", outputClass, "to 1, everything else to 0. factor() to turn real to int (for rf)"
boundary = (trainPercent + 0.0)/100
execExpr = ""
execExpr += "cct.hex=runif(%s,-1);" % srcKey
execExpr += "%s=%s[cct.hex<=%s,];" % (trainDstKey, srcKey, boundary)
if changeToBinomial:
execExpr += "%s[,%s]=%s[,%s]==%s;" % (trainDstKey, outputCol+1, trainDstKey, outputCol+1, outputClass)
execExpr += "factor(%s[, %s]);" % (trainDstKey, outputCol+1)
h2o_exec.exec_expr(None, execExpr, resultKey=trainDstKey, timeoutSecs=30)
inspect = runInspect(key=trainDstKey)
infoFromInspect(inspect, "%s after mungeDataset on %s" % (trainDstKey, srcKey) )
print "test: same, but use the same runif() random result, complement comparison"
execExpr = ""
execExpr += "%s=%s[cct.hex>%s,];" % (testDstKey, srcKey, boundary)
if changeToBinomial:
execExpr += "%s[,%s]=%s[,%s]==%s;" % (testDstKey, outputCol+1, testDstKey, outputCol+1, outputClass)
execExpr += "factor(%s[, %s])" % (testDstKey, outputCol+1)
h2o_exec.exec_expr(None, execExpr, resultKey=testDstKey, timeoutSecs=30)
inspect = runInspect(key=testDstKey)
infoFromInspect(inspect, "%s after mungeDataset on %s" % (testDstKey, srcKey) )
# figure out what cols to ignore (opposite of cols+response)
def createIgnoredCols(key, cols, response):
inspect = runInspect(key=key)
numCols = inspect['numCols']
ignore = filter(lambda x:(x not in cols and x!=response), range(numCols))
ignored_cols = ','.join(map(str,ignore))
return ignored_cols
# example:
# h2o_cmd.runScore(dataKey=scoreDataKey, modelKey=modelKey, vactual=y, vpredict=1, expectedAuc=0.5)
def runScore(node=None, dataKey=None, modelKey=None, predictKey='Predict.hex',
vactual='C1', vpredict=1, expectedAuc=None, doAUC=True, timeoutSecs=200):
# Score *******************************
# this messes up if you use case_mode/case_vale above
predictKey = 'Predict.hex'
start = time.time()
predictResult = runPredict(
data_key=dataKey,
model_key=modelKey,
destination_key=predictKey,
timeoutSecs=timeoutSecs)
# inspect = runInspect(key=dataKey)
# print dataKey, h2o.dump_json(inspect)
# just get a predict and AUC on the same data. has to be binomial result
if doAUC:
resultAUC = h2o.nodes[0].generate_auc(
thresholds=None,
actual=dataKey,
predict='Predict.hex',
vactual=vactual,
vpredict=vpredict)
auc = resultAUC['aucdata']['AUC']
if expectedAuc:
h2o_util.assertApproxEqual(auc, expectedAuc, tol=0.15,
msg="actual auc: %s not close enough to %s" % (auc, expectedAuc))
# don't do this unless binomial
predictCMResult = h2o.nodes[0].predict_confusion_matrix(
actual=dataKey,
predict=predictKey,
vactual=vactual,
vpredict='predict',
)
# print "cm", h2o.dump_json(predictCMResult)
# These will move into the h2o_gbm.py
# if doAUC=False, means we're not binomial, and the cm is not what we expect
if doAUC:
cm = predictCMResult['cm']
pctWrong = h2o_gbm.pp_cm_summary(cm);
print h2o_gbm.pp_cm(cm)
return predictCMResult