forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wm_sqrt.S
470 lines (370 loc) · 10.7 KB
/
wm_sqrt.S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
.file "wm_sqrt.S"
/*---------------------------------------------------------------------------+
| wm_sqrt.S |
| |
| Fixed point arithmetic square root evaluation. |
| |
| Copyright (C) 1992,1993,1995,1997 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
| Australia. E-mail [email protected] |
| |
| Call from C as: |
| int wm_sqrt(FPU_REG *n, unsigned int control_word) |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| wm_sqrt(FPU_REG *n, unsigned int control_word) |
| returns the square root of n in n. |
| |
| Use Newton's method to compute the square root of a number, which must |
| be in the range [1.0 .. 4.0), to 64 bits accuracy. |
| Does not check the sign or tag of the argument. |
| Sets the exponent, but not the sign or tag of the result. |
| |
| The guess is kept in %esi:%edi |
+---------------------------------------------------------------------------*/
#include "exception.h"
#include "fpu_emu.h"
#ifndef NON_REENTRANT_FPU
/* Local storage on the stack: */
#define FPU_accum_3 -4(%ebp) /* ms word */
#define FPU_accum_2 -8(%ebp)
#define FPU_accum_1 -12(%ebp)
#define FPU_accum_0 -16(%ebp)
/*
* The de-normalised argument:
* sq_2 sq_1 sq_0
* b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
* ^ binary point here
*/
#define FPU_fsqrt_arg_2 -20(%ebp) /* ms word */
#define FPU_fsqrt_arg_1 -24(%ebp)
#define FPU_fsqrt_arg_0 -28(%ebp) /* ls word, at most the ms bit is set */
#else
/* Local storage in a static area: */
.data
.align 4,0
FPU_accum_3:
.long 0 /* ms word */
FPU_accum_2:
.long 0
FPU_accum_1:
.long 0
FPU_accum_0:
.long 0
/* The de-normalised argument:
sq_2 sq_1 sq_0
b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
^ binary point here
*/
FPU_fsqrt_arg_2:
.long 0 /* ms word */
FPU_fsqrt_arg_1:
.long 0
FPU_fsqrt_arg_0:
.long 0 /* ls word, at most the ms bit is set */
#endif /* NON_REENTRANT_FPU */
.text
ENTRY(wm_sqrt)
pushl %ebp
movl %esp,%ebp
#ifndef NON_REENTRANT_FPU
subl $28,%esp
#endif /* NON_REENTRANT_FPU */
pushl %esi
pushl %edi
pushl %ebx
movl PARAM1,%esi
movl SIGH(%esi),%eax
movl SIGL(%esi),%ecx
xorl %edx,%edx
/* We use a rough linear estimate for the first guess.. */
cmpw EXP_BIAS,EXP(%esi)
jnz sqrt_arg_ge_2
shrl $1,%eax /* arg is in the range [1.0 .. 2.0) */
rcrl $1,%ecx
rcrl $1,%edx
sqrt_arg_ge_2:
/* From here on, n is never accessed directly again until it is
replaced by the answer. */
movl %eax,FPU_fsqrt_arg_2 /* ms word of n */
movl %ecx,FPU_fsqrt_arg_1
movl %edx,FPU_fsqrt_arg_0
/* Make a linear first estimate */
shrl $1,%eax
addl $0x40000000,%eax
movl $0xaaaaaaaa,%ecx
mull %ecx
shll %edx /* max result was 7fff... */
testl $0x80000000,%edx /* but min was 3fff... */
jnz sqrt_prelim_no_adjust
movl $0x80000000,%edx /* round up */
sqrt_prelim_no_adjust:
movl %edx,%esi /* Our first guess */
/* We have now computed (approx) (2 + x) / 3, which forms the basis
for a few iterations of Newton's method */
movl FPU_fsqrt_arg_2,%ecx /* ms word */
/*
* From our initial estimate, three iterations are enough to get us
* to 30 bits or so. This will then allow two iterations at better
* precision to complete the process.
*/
/* Compute (g + n/g)/2 at each iteration (g is the guess). */
shrl %ecx /* Doing this first will prevent a divide */
/* overflow later. */
movl %ecx,%edx /* msw of the arg / 2 */
divl %esi /* current estimate */
shrl %esi /* divide by 2 */
addl %eax,%esi /* the new estimate */
movl %ecx,%edx
divl %esi
shrl %esi
addl %eax,%esi
movl %ecx,%edx
divl %esi
shrl %esi
addl %eax,%esi
/*
* Now that an estimate accurate to about 30 bits has been obtained (in %esi),
* we improve it to 60 bits or so.
*
* The strategy from now on is to compute new estimates from
* guess := guess + (n - guess^2) / (2 * guess)
*/
/* First, find the square of the guess */
movl %esi,%eax
mull %esi
/* guess^2 now in %edx:%eax */
movl FPU_fsqrt_arg_1,%ecx
subl %ecx,%eax
movl FPU_fsqrt_arg_2,%ecx /* ms word of normalized n */
sbbl %ecx,%edx
jnc sqrt_stage_2_positive
/* Subtraction gives a negative result,
negate the result before division. */
notl %edx
notl %eax
addl $1,%eax
adcl $0,%edx
divl %esi
movl %eax,%ecx
movl %edx,%eax
divl %esi
jmp sqrt_stage_2_finish
sqrt_stage_2_positive:
divl %esi
movl %eax,%ecx
movl %edx,%eax
divl %esi
notl %ecx
notl %eax
addl $1,%eax
adcl $0,%ecx
sqrt_stage_2_finish:
sarl $1,%ecx /* divide by 2 */
rcrl $1,%eax
/* Form the new estimate in %esi:%edi */
movl %eax,%edi
addl %ecx,%esi
jnz sqrt_stage_2_done /* result should be [1..2) */
#ifdef PARANOID
/* It should be possible to get here only if the arg is ffff....ffff */
cmp $0xffffffff,FPU_fsqrt_arg_1
jnz sqrt_stage_2_error
#endif /* PARANOID */
/* The best rounded result. */
xorl %eax,%eax
decl %eax
movl %eax,%edi
movl %eax,%esi
movl $0x7fffffff,%eax
jmp sqrt_round_result
#ifdef PARANOID
sqrt_stage_2_error:
pushl EX_INTERNAL|0x213
call EXCEPTION
#endif /* PARANOID */
sqrt_stage_2_done:
/* Now the square root has been computed to better than 60 bits. */
/* Find the square of the guess. */
movl %edi,%eax /* ls word of guess */
mull %edi
movl %edx,FPU_accum_1
movl %esi,%eax
mull %esi
movl %edx,FPU_accum_3
movl %eax,FPU_accum_2
movl %edi,%eax
mull %esi
addl %eax,FPU_accum_1
adcl %edx,FPU_accum_2
adcl $0,FPU_accum_3
/* movl %esi,%eax */
/* mull %edi */
addl %eax,FPU_accum_1
adcl %edx,FPU_accum_2
adcl $0,FPU_accum_3
/* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */
movl FPU_fsqrt_arg_0,%eax /* get normalized n */
subl %eax,FPU_accum_1
movl FPU_fsqrt_arg_1,%eax
sbbl %eax,FPU_accum_2
movl FPU_fsqrt_arg_2,%eax /* ms word of normalized n */
sbbl %eax,FPU_accum_3
jnc sqrt_stage_3_positive
/* Subtraction gives a negative result,
negate the result before division */
notl FPU_accum_1
notl FPU_accum_2
notl FPU_accum_3
addl $1,FPU_accum_1
adcl $0,FPU_accum_2
#ifdef PARANOID
adcl $0,FPU_accum_3 /* This must be zero */
jz sqrt_stage_3_no_error
sqrt_stage_3_error:
pushl EX_INTERNAL|0x207
call EXCEPTION
sqrt_stage_3_no_error:
#endif /* PARANOID */
movl FPU_accum_2,%edx
movl FPU_accum_1,%eax
divl %esi
movl %eax,%ecx
movl %edx,%eax
divl %esi
sarl $1,%ecx /* divide by 2 */
rcrl $1,%eax
/* prepare to round the result */
addl %ecx,%edi
adcl $0,%esi
jmp sqrt_stage_3_finished
sqrt_stage_3_positive:
movl FPU_accum_2,%edx
movl FPU_accum_1,%eax
divl %esi
movl %eax,%ecx
movl %edx,%eax
divl %esi
sarl $1,%ecx /* divide by 2 */
rcrl $1,%eax
/* prepare to round the result */
notl %eax /* Negate the correction term */
notl %ecx
addl $1,%eax
adcl $0,%ecx /* carry here ==> correction == 0 */
adcl $0xffffffff,%esi
addl %ecx,%edi
adcl $0,%esi
sqrt_stage_3_finished:
/*
* The result in %esi:%edi:%esi should be good to about 90 bits here,
* and the rounding information here does not have sufficient accuracy
* in a few rare cases.
*/
cmpl $0xffffffe0,%eax
ja sqrt_near_exact_x
cmpl $0x00000020,%eax
jb sqrt_near_exact
cmpl $0x7fffffe0,%eax
jb sqrt_round_result
cmpl $0x80000020,%eax
jb sqrt_get_more_precision
sqrt_round_result:
/* Set up for rounding operations */
movl %eax,%edx
movl %esi,%eax
movl %edi,%ebx
movl PARAM1,%edi
movw EXP_BIAS,EXP(%edi) /* Result is in [1.0 .. 2.0) */
jmp fpu_reg_round
sqrt_near_exact_x:
/* First, the estimate must be rounded up. */
addl $1,%edi
adcl $0,%esi
sqrt_near_exact:
/*
* This is an easy case because x^1/2 is monotonic.
* We need just find the square of our estimate, compare it
* with the argument, and deduce whether our estimate is
* above, below, or exact. We use the fact that the estimate
* is known to be accurate to about 90 bits.
*/
movl %edi,%eax /* ls word of guess */
mull %edi
movl %edx,%ebx /* 2nd ls word of square */
movl %eax,%ecx /* ls word of square */
movl %edi,%eax
mull %esi
addl %eax,%ebx
addl %eax,%ebx
#ifdef PARANOID
cmp $0xffffffb0,%ebx
jb sqrt_near_exact_ok
cmp $0x00000050,%ebx
ja sqrt_near_exact_ok
pushl EX_INTERNAL|0x214
call EXCEPTION
sqrt_near_exact_ok:
#endif /* PARANOID */
or %ebx,%ebx
js sqrt_near_exact_small
jnz sqrt_near_exact_large
or %ebx,%edx
jnz sqrt_near_exact_large
/* Our estimate is exactly the right answer */
xorl %eax,%eax
jmp sqrt_round_result
sqrt_near_exact_small:
/* Our estimate is too small */
movl $0x000000ff,%eax
jmp sqrt_round_result
sqrt_near_exact_large:
/* Our estimate is too large, we need to decrement it */
subl $1,%edi
sbbl $0,%esi
movl $0xffffff00,%eax
jmp sqrt_round_result
sqrt_get_more_precision:
/* This case is almost the same as the above, except we start
with an extra bit of precision in the estimate. */
stc /* The extra bit. */
rcll $1,%edi /* Shift the estimate left one bit */
rcll $1,%esi
movl %edi,%eax /* ls word of guess */
mull %edi
movl %edx,%ebx /* 2nd ls word of square */
movl %eax,%ecx /* ls word of square */
movl %edi,%eax
mull %esi
addl %eax,%ebx
addl %eax,%ebx
/* Put our estimate back to its original value */
stc /* The ms bit. */
rcrl $1,%esi /* Shift the estimate left one bit */
rcrl $1,%edi
#ifdef PARANOID
cmp $0xffffff60,%ebx
jb sqrt_more_prec_ok
cmp $0x000000a0,%ebx
ja sqrt_more_prec_ok
pushl EX_INTERNAL|0x215
call EXCEPTION
sqrt_more_prec_ok:
#endif /* PARANOID */
or %ebx,%ebx
js sqrt_more_prec_small
jnz sqrt_more_prec_large
or %ebx,%ecx
jnz sqrt_more_prec_large
/* Our estimate is exactly the right answer */
movl $0x80000000,%eax
jmp sqrt_round_result
sqrt_more_prec_small:
/* Our estimate is too small */
movl $0x800000ff,%eax
jmp sqrt_round_result
sqrt_more_prec_large:
/* Our estimate is too large */
movl $0x7fffff00,%eax
jmp sqrt_round_result