forked from dsgiitr/adversarial_lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommons.py
50 lines (42 loc) · 1.55 KB
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import io
from PIL import Image
from torchvision import models
import torchvision.transforms as transforms
import numpy as np
import torch
import base64
def get_model(model_inp):
model = getattr(models,model_inp)(pretrained=True)
model.eval()
return model
def transform_image(image_bytes):
my_transforms = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image = Image.open(io.BytesIO(image_bytes))
return my_transforms(image).unsqueeze(0)
def rev_transform(image):
inv_normalize = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255],
std=[1/0.229, 1/0.224, 1/0.255])
image = inv_normalize(image)
npimg = image.cpu().numpy()
npimg = np.transpose(npimg, (1, 2, 0))
return np.clip(npimg,0,1)
# ImageNet classes are often of the form `can_opener` or `Egyptian_cat`
# will use this method to properly format it so that we get
# `Can Opener` or `Egyptian Cat`
def format_class_name(class_name):
class_name = class_name.replace('_', ' ')
class_name = class_name.title()
return class_name
def getb64str(nparr):
nparr=nparr*255
im = Image.fromarray(nparr.astype("uint8"))
rawBytes = io.BytesIO()
im.save(rawBytes, "PNG")
rawBytes.seek(0)
return base64.b64encode(rawBytes.read())