forked from GAOYANGAU/DRLPytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
A3C-DDPG.py
158 lines (125 loc) · 6.52 KB
/
A3C-DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import print_function
import torch, time, gym, argparse, sys
import numpy as np
from scipy.signal import lfilter
from scipy.misc import imresize
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
parser = argparse.ArgumentParser()
parser.add_argument('--env', default='Breakout-v4', type=str, help='gym environment')
parser.add_argument('--processes', default=1, type=int, help='number of processes')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--gamma', default=0.99, type=float, help='rewards discount factor')
parser.add_argument('--seed', default=1, type=int, help='random seed')
args = parser.parse_args()
discount = lambda x, gamma: lfilter([1], [1, -gamma], x[::-1])[::-1]
prepro = lambda img: imresize(img[35:195].mean(2), (80, 80)).astype(np.float32).reshape(1, 80, 80) / 255.
class NNPolicy(nn.Module):
def __init__(self, num_actions):
super(NNPolicy, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.gru = nn.GRUCell(32 * 5 * 5, 256)
self.critic_net, self.actor_net = nn.Linear(256, 1), nn.Linear(256, num_actions)
def forward(self, inputs, train=True, hard=False):
inputs, hx = inputs
x = F.elu(self.conv1(inputs))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
hx = self.gru(x.view(-1, 32 * 5 * 5), (hx))
return self.critic_net(hx), self.actor_net(hx), hx
class SharedAdam(torch.optim.Adam):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
super(SharedAdam, self).__init__(params, lr, betas, eps, weight_decay)
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['shared_steps'], state['step'] = torch.zeros(1).share_memory_(), 0
state['exp_avg'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
def loss_func(args, values, logps, actions, rewards):
np_values = values.view(-1).data.numpy()
delta_t = np.asarray(rewards) + args.gamma * np_values[1:] - np_values[:-1]
logpys = logps.gather(1, torch.tensor(actions).view(-1, 1))
gen_adv_est = discount(delta_t, args.gamma)
policy_loss = -(logpys.view(-1) * torch.FloatTensor(gen_adv_est.copy())).sum()
rewards[-1] += args.gamma * np_values[-1]
discounted_r = discount(np.asarray(rewards), args.gamma)
discounted_r = torch.tensor(discounted_r.copy(), dtype=torch.float32)
value_loss = .5 * (discounted_r - values[:-1, 0]).pow(2).sum()
entropy_loss = -(-logps * torch.exp(logps)).sum()
return policy_loss + 0.5 * value_loss + 0.01 * entropy_loss
def worker(shared_model, shared_optimizer, rank, args, info):
env = gym.make(args.env)
env.seed(args.seed + rank)
torch.manual_seed(args.seed + rank)
model = NNPolicy(num_actions=args.num_actions)
state = torch.tensor(prepro(env.reset()))
start_time = last_disp_time = time.time()
episode_length, epr, eploss, done = 0, 0, 0, True
while info['frames'][0] <= 4e7:
model.load_state_dict(shared_model.state_dict())
hx = torch.zeros(1, 256) if done else hx.detach()
values, logps, actions, rewards = [], [], [], []
for step in range(4):
episode_length += 1
value, logit, hx = model((state.view(1, 1, 80, 80), hx))
logp = F.log_softmax(logit, dim=-1)
action = torch.exp(logp).multinomial(num_samples=1).data[0]
state, reward, done, _ = env.step(action.numpy()[0])
# env.render()
state = torch.tensor(prepro(state))
epr += reward
reward = np.clip(reward, -1, 1)
done = done or episode_length >= 1e4
info['frames'].add_(1)
num_frames = int(info['frames'].item())
if done:
info['episodes'] += 1
interp = 1 if info['episodes'][0] == 1 else 0.01
info['run_epr'].mul_(1 - interp).add_(interp * epr)
info['run_loss'].mul_(1 - interp).add_(interp * eploss)
if rank == 0 and time.time() - last_disp_time > 60:
elapsed = time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time))
print('time {}, episodes {:.0f}, frames {:.1f}M, mean epr {:.2f}, run loss {:.2f}'
.format(elapsed, info['episodes'].item(), num_frames / 1e6,
info['run_epr'].item(), info['run_loss'].item()))
last_disp_time = time.time()
if done:
episode_length, epr, eploss = 0, 0, 0
state = torch.tensor(prepro(env.reset()))
values.append(value)
logps.append(logp)
actions.append(action)
rewards.append(reward)
next_value = torch.zeros(1, 1) if done else model((state.unsqueeze(0), hx))[0]
values.append(next_value.detach())
loss = loss_func(args, torch.cat(values), torch.cat(logps), torch.cat(actions), np.asarray(rewards))
eploss += loss.item()
shared_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 40)
for param, shared_param in zip(model.parameters(), shared_model.parameters()):
if shared_param.grad is None:
shared_param._grad = param.grad
shared_optimizer.step()
if __name__ == "__main__":
if sys.version_info[0] > 2:
mp.set_start_method('spawn')
elif sys.platform == 'linux' or sys.platform == 'linux2':
raise "Must be using Python 3 with linux! Or else you get a deadlock in conv2d"
args.num_actions = gym.make(args.env).action_space.n
torch.manual_seed(args.seed)
shared_model = NNPolicy(num_actions=args.num_actions).share_memory()
shared_optimizer = SharedAdam(shared_model.parameters(), lr=args.lr)
info = {k: torch.DoubleTensor([0]).share_memory_() for k in ['run_epr', 'run_loss', 'episodes', 'frames']}
processes = []
for rank in range(args.processes):
p = mp.Process(target=worker, args=(shared_model, shared_optimizer, rank, args, info))
p.start()
processes.append(p)
for p in processes: p.join()