Skip to content

FROGS is a galaxy/CLI workflow designed to produce an OTUs count matrix from high depth sequencing amplicon data.

License

Notifications You must be signed in to change notification settings

vindarbot/FROGS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#Find Rapidly OTUs with Galaxy Solution

Description

FROGS is a galaxy/CLI workflow designed to produce an OTU count matrix 
from high depth sequencing amplicon data.
This workflow is focused on:
    - User-friendliness with the integration in galaxy and lots of rich 
      graphic outputs
    - Accuracy with a clustering without global similarity threshold, the
      management of multi-affiliations and management of separated PCRs
      in the chimera removal step
    - Speed with fast algorithms and an easy to use parallelisation
    - Scalability with algorithms designed to support the data growth

Convenient input data

Legend for the next schemas:
    .: Complete nucleic sequence
    !: Region of interest
    *: PCR primers

Paired-end classical protocol:
    In the paired-end protocol R1 and R2 must share a nucleic region. 
    For example the amplicons on V3-V4 regions can have a length between
    350 and 500nt; with 2*300pb sequencing the overlap is between 250nt
    and 100nt. 
    From:                                    To:
     rDNA .........!!!!!!................    ......!!!!!!!!!!!!!!!!!!!.....
     Ampl      ****!!!!!!****                  ****!!!!!!!!!!!!!!!!!!!****
       R1      --------------                  --------------
       R2      --------------                               --------------

    The maximum overlap between R1 and R2 can be the complete overlap.
        Inconvenient maximum overlap:
        R1    --------------
        R2   --------------
    In this case it is necessary to trim R1 and R2 ends before the process.

    The minimum overlap between R1 and R2 can have 15nt. With less the 
    overlap can be incorrect.
          
Single-end classical protocol:
    rDNA .........!!!!!!................
    Ampl      ****!!!!!!****
    Read      --------------

Custom protocol
    rDNA .....!!!!!!!!!!!!!!............
    Ampl      ****!!!!!!****
    Read      --------------       

Note: The amplicons can have a length variability.
      The R1 and R2 can have different length.

Installation

1. Download code

Released versions
    Available at https://github.com/geraldinepascal/FROGS/releases
    After the download, follow the README instructions.

Otherwise, you can clone the repository from GitHub:
    git clone https://github.com/geraldinepascal/FROGS.git

2. FROGS folder

Default structure:
    <FROGS_PATH>/
        app/                 # FROGS applications (this folder must be 
            ...              # accessible for command line and/or galaxy)
            preprocess.py        # Link to tools/preprocess/preprocess.py
            ...
        lib/                 # FROGS python librairies
            ...
            frogsBiom.py
            ...
        libexec/             # FROGS softwares (you can also add the 
            ...              # dependencies in this folder)
            biomTools.py
            ...
        tools/               # FROGS applications with one sub-folder by
            ...              # application
            preprocess/
                preprocess.py
                preprocess.xml
            ...

If you want to change this architecture 'libexec' must be accessible in the
PATH and 'lib' must be accessible in the PYTHONPATH.

3. Install dependencies

Dependencies must be accessible in the PATH or added in 
<FROGS_PATH>/libexec.

python interpreter
    Version: 2.7
    Tools: all

python SciPy
    Tools: clusters_stat

perl interpreter
    Version: 5
    Tools: demultiplex

flash
    Version: >=1.2.8
    Named as: flash
    Tools: preprocess
    Download: http://sourceforge.net/projects/flashpage/files

cutadapt
    Version: >=1.7
    Named as: cutadapt
    Tools: preprocess
    Download: https://github.com/marcelm/cutadapt
              OR
              https://pypi.python.org/pypi/cutadapt

swarm
    Version: >=2.1.1
    Named as: swarm
    Tools: clustering
    Download: https://github.com/torognes/swarm

vsearch
    Version: >=1.1.3
    Named as: vsearch
    Tools: remove_chimera
    Download: https://github.com/torognes/vsearch

NCBI Blast+ blastn
    Version: >=2.2.29+
    Named as: blastn
    Tools: affiliation_OTU and filters
    Download: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

RDPClassifier
    Version: -
    Name as: classifier.jar
    Tools: affiliation_OTU
    Download: https://github.com/rdpstaff/RDPTools

taskset
    Version: util-linux-ng 2.17.2
    Name as: taskset
    Tools: affiliation_OTU
    Install: sudo apt-get install util-linux
             OR
             sudo yum install util-linux

4. Check intallation

To check your installation you can type:
    cd <FROGS_PATH>/test
    bash test.sh <FROGS_PATH> <NB_CPU> <JAVA_MEM> <OUT_FOLDER>

This test executes the FROGS tools in command line mode.
Note:
    JAVA_MEM must be at least 4 (= 4Gb of RAM).
Example:
    [user@computer:/home/user]$cd /home/user/frogs_git/test
    [user@computer:/home/user/frogs_git/test]$bash test.sh /home/user/frogs_git/ 2 4 /tmp/results
    Step preprocess Fri Apr  8 11:44:10 CEST 2016
    Step clustering Fri Apr  8 11:45:32 CEST 2016
    Step remove_chimera Fri Apr  8 11:46:02 CEST 2016
    Step filters Fri Apr  8 11:47:11 CEST 2016
    Step affiliation_OTU Fri Apr  8 11:47:12 CEST 2016
    Step clusters_stat Fri Apr  8 11:47:18 CEST 2016
    Step affiliations_stat Fri Apr  8 11:47:20 CEST 2016
    Step biom_to_tsv Fri Apr  8 11:47:40 CEST 2016
    Step biom_to_stdBiom Fri Apr  8 11:47:41 CEST 2016
    Step tsv_to_biom Fri Apr  8 11:47:42 CEST 2016
    Completed with success

5. Add the biom1 datatype in galaxy

The biom1 datatype is availaible since version 16 of galaxy.

For previous versions add the following text in galaxy datatypes_conf.xml:
    For galaxy releases 15:
        <registration converters_path="lib/galaxy/datatypes/converters">
            ...
            <datatype extension="biom1" type="galaxy.datatypes.text:Biom1" display_in_upload="True" subclass="True" mimetype="application/json" />
            ...
        <registration />
    For galaxy releases 14:
        <registration converters_path="lib/galaxy/datatypes/converters">
            ...
            <datatype extension="biom1" type="galaxy.datatypes.data:Text" display_in_upload="True" subclass="True" mimetype="application/json" />
            ...
        <registration />

6. Add tools in galaxy

Add the tools in galaxy tool_conf.xml.
Example:
    ...
    <section id="FROGS_wrappers" name="FROGS">
        <tool file="FROGS/app/upload_tar.xml" />
        <tool file="FROGS/app/demultiplex.xml" />
        <tool file="FROGS/app/preprocess.xml" />
        <tool file="FROGS/app/clustering.xml" />
        <tool file="FROGS/app/remove_chimera.xml" />  
        <tool file="FROGS/app/filters.xml" />
        <tool file="FROGS/app/affiliation_OTU.xml" />
        <tool file="FROGS/app/clusters_stat.xml" />
        <tool file="FROGS/app/affiliations_stat.xml" />
        <tool file="FROGS/app/biom_to_stdBiom.xml" />
        <tool file="FROGS/app/biom_to_tsv.xml" />
        <tool file="FROGS/app/tsv_to_biom.xml" />
        <tool file="FROGS/app/normalisation.xml" />
    </section>
    ...

7. Set memory and parallelisation settings

If you have more than one CPU, it is recommended to increase the number
of CPUs used by tools.
All the CPUs must be on the same computer/node.

a] Specifications  
    Tool            RAM/CPU     Minimal RAM     Configuration example
    affiliation        -          20 Gb          30 CPUs and 300 GB
    chimera          3 Gb          5 Gb          12 CPUs and 36 GB
    clustering         -          10 Gb          16 CPUs and 60 GB
    preprocess       8 Gb            -           12 CPUs and 96 GB

b] Change the number of CPUs used
    Each tool with parallelisation possibilities contains in its XML an
    hidden parameter to set the number of used CPUs.
    Example for 16 CPUs:
       <param name="nb_cpus" type="hidden" label="CPU number" help="The maximum number of CPUs used." value="1" />
       Is changed to :
       <param name="nb_cpus" type="hidden" label="CPU number" help="The maximum number of CPUs used." value="16" />

c] Change the tool launcher configuration
    In galaxy the job_conf.xml allows to change the scheduler 
    submission parameters.
    Example for SGE scheduler:
        <destinations>
            ...
            <destination id="FROGS_preprocess_job" runner="drmaa">
                <param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
                <param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
                <param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
                <param id="nativeSpecification">-clear -q galaxyq -l mem=5G -l h_vmem=13G -pe parallel_smp 12</param>
            </destination>
            <destination id="FROGS_clustering_job" runner="drmaa">
                <param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
                <param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
                <param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
                <param id="nativeSpecification">-clear -q galaxyq -l mem=3G -l h_vmem=10G -pe parallel_smp 16</param>
            </destination>
            <destination id="FROGS_remove_chimera_job" runner="drmaa">
                <param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
                <param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
                <param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
                <param id="nativeSpecification">-clear -q galaxyq -l mem=3G -l h_vmem=4G -pe parallel_smp 12</param>
            </destination>
            <destination id="FROGS_affiliation_OTU_job" runner="drmaa">
                <param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
                <param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
                <param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
                <param id="nativeSpecification">-clear -q galaxyq -l mem=7G -l h_vmem=10G -pe parallel_smp 30</param>
            </destination>
        </destinations>
        <tools>
            ...
            <tool id="FROGS_preprocess" destination="FROGS_preprocess_job"/>   
            <tool id="FROGS_clustering" destination="FROGS_clustering_job"/>     
            <tool id="FROGS_remove_chimera" destination="FROGS_remove_chimera_job"/> 
            <tool id="FROGS_affiliation_OTU" destination="FROGS_affiliation_OTU_job"/>
        </tools>

8. Upload and configure the databanks

a] Assignation databank
    - Upload databanks and indexes from http://genoweb.toulouse.inra.fr/frogs_databanks/assignation
    - Extract databanks.
    - To use these databank, you need to create a .loc file named
      'frogs_db.loc'. The path provided must be the '.fasta'.
b] Contaminant databank
    - Upload databank and indexes from http://genoweb.toulouse.inra.fr/frogs_databanks/contaminants
    - Extract databank.
    - To use this databank, you need to create a .loc file named
      'phiX_db.loc'. The path provided must be the '.fasta'.

9. Tools images

The tools help contain images. These images must be in galaxy images
static folder.
    ln -s <FROGS_PATH>/img <GALAXY_DIR>/static/images/tools/frogs

Troubleshooting

Abnormal increase memory consumption with CPU number

With certain old versions of glibc the virtual memory used by CPU is
multiplicative.
Nb CPUs   expected RAM consumtion   observed RAM consumption
   1               1Gb                       1Gb
   2               2Gb                     2*2Gb
   3               3Gb                     3*3Gb
   4               5Gb                     4*4Gb
The parameters memory and CPU provided in examples take into account 
this problem.

Abnormal threads consumption in RDPClassifier

With large database like silva NR the RDPClassifier opens automatically
a large number of threads. These threads use all the available CPU
ressources. This is not an acceptable behaviour in multi-user context.
To prevent this behaviour the tool 'affiliation_OTU' uses taskset to
force RDPClassifier to run only on the specified number of CPUs. The
number of threads is not changed but the CPU consumption is controled.

License

GNU GPL v3

Copyright

2015 INRA

Citation

Escudie F., Auer L., Bernard M., Cauquil L., Vidal K., Maman S.,
Mariadassou M., Hernadez-Raquet G., Pascal G., 2015. FROGS: Find Rapidly
OTU with Galaxy Solution. In: The environmental genomic Conference, 
Montpellier, France

Contact

About

FROGS is a galaxy/CLI workflow designed to produce an OTUs count matrix from high depth sequencing amplicon data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 48.7%
  • HTML 48.0%
  • Shell 1.8%
  • Perl 1.3%
  • R 0.2%