#Find Rapidly OTUs with Galaxy Solution
FROGS is a galaxy/CLI workflow designed to produce an OTU count matrix
from high depth sequencing amplicon data.
This workflow is focused on:
- User-friendliness with the integration in galaxy and lots of rich
graphic outputs
- Accuracy with a clustering without global similarity threshold, the
management of multi-affiliations and management of separated PCRs
in the chimera removal step
- Speed with fast algorithms and an easy to use parallelisation
- Scalability with algorithms designed to support the data growth
Legend for the next schemas:
.: Complete nucleic sequence
!: Region of interest
*: PCR primers
Paired-end classical protocol:
In the paired-end protocol R1 and R2 must share a nucleic region.
For example the amplicons on V3-V4 regions can have a length between
350 and 500nt; with 2*300pb sequencing the overlap is between 250nt
and 100nt.
From: To:
rDNA .........!!!!!!................ ......!!!!!!!!!!!!!!!!!!!.....
Ampl ****!!!!!!**** ****!!!!!!!!!!!!!!!!!!!****
R1 -------------- --------------
R2 -------------- --------------
The maximum overlap between R1 and R2 can be the complete overlap.
Inconvenient maximum overlap:
R1 --------------
R2 --------------
In this case it is necessary to trim R1 and R2 ends before the process.
The minimum overlap between R1 and R2 can have 15nt. With less the
overlap can be incorrect.
Single-end classical protocol:
rDNA .........!!!!!!................
Ampl ****!!!!!!****
Read --------------
Custom protocol
rDNA .....!!!!!!!!!!!!!!............
Ampl ****!!!!!!****
Read --------------
Note: The amplicons can have a length variability.
The R1 and R2 can have different length.
Released versions
Available at https://github.com/geraldinepascal/FROGS/releases
After the download, follow the README instructions.
Otherwise, you can clone the repository from GitHub:
git clone https://github.com/geraldinepascal/FROGS.git
Default structure:
<FROGS_PATH>/
app/ # FROGS applications (this folder must be
... # accessible for command line and/or galaxy)
preprocess.py # Link to tools/preprocess/preprocess.py
...
lib/ # FROGS python librairies
...
frogsBiom.py
...
libexec/ # FROGS softwares (you can also add the
... # dependencies in this folder)
biomTools.py
...
tools/ # FROGS applications with one sub-folder by
... # application
preprocess/
preprocess.py
preprocess.xml
...
If you want to change this architecture 'libexec' must be accessible in the
PATH and 'lib' must be accessible in the PYTHONPATH.
Dependencies must be accessible in the PATH or added in
<FROGS_PATH>/libexec.
python interpreter
Version: 2.7
Tools: all
python SciPy
Tools: clusters_stat
perl interpreter
Version: 5
Tools: demultiplex
flash
Version: >=1.2.8
Named as: flash
Tools: preprocess
Download: http://sourceforge.net/projects/flashpage/files
cutadapt
Version: >=1.7
Named as: cutadapt
Tools: preprocess
Download: https://github.com/marcelm/cutadapt
OR
https://pypi.python.org/pypi/cutadapt
swarm
Version: >=2.1.1
Named as: swarm
Tools: clustering
Download: https://github.com/torognes/swarm
vsearch
Version: >=1.1.3
Named as: vsearch
Tools: remove_chimera
Download: https://github.com/torognes/vsearch
NCBI Blast+ blastn
Version: >=2.2.29+
Named as: blastn
Tools: affiliation_OTU and filters
Download: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
RDPClassifier
Version: -
Name as: classifier.jar
Tools: affiliation_OTU
Download: https://github.com/rdpstaff/RDPTools
taskset
Version: util-linux-ng 2.17.2
Name as: taskset
Tools: affiliation_OTU
Install: sudo apt-get install util-linux
OR
sudo yum install util-linux
To check your installation you can type:
cd <FROGS_PATH>/test
bash test.sh <FROGS_PATH> <NB_CPU> <JAVA_MEM> <OUT_FOLDER>
This test executes the FROGS tools in command line mode.
Note:
JAVA_MEM must be at least 4 (= 4Gb of RAM).
Example:
[user@computer:/home/user]$cd /home/user/frogs_git/test
[user@computer:/home/user/frogs_git/test]$bash test.sh /home/user/frogs_git/ 2 4 /tmp/results
Step preprocess Fri Apr 8 11:44:10 CEST 2016
Step clustering Fri Apr 8 11:45:32 CEST 2016
Step remove_chimera Fri Apr 8 11:46:02 CEST 2016
Step filters Fri Apr 8 11:47:11 CEST 2016
Step affiliation_OTU Fri Apr 8 11:47:12 CEST 2016
Step clusters_stat Fri Apr 8 11:47:18 CEST 2016
Step affiliations_stat Fri Apr 8 11:47:20 CEST 2016
Step biom_to_tsv Fri Apr 8 11:47:40 CEST 2016
Step biom_to_stdBiom Fri Apr 8 11:47:41 CEST 2016
Step tsv_to_biom Fri Apr 8 11:47:42 CEST 2016
Completed with success
The biom1 datatype is availaible since version 16 of galaxy.
For previous versions add the following text in galaxy datatypes_conf.xml:
For galaxy releases 15:
<registration converters_path="lib/galaxy/datatypes/converters">
...
<datatype extension="biom1" type="galaxy.datatypes.text:Biom1" display_in_upload="True" subclass="True" mimetype="application/json" />
...
<registration />
For galaxy releases 14:
<registration converters_path="lib/galaxy/datatypes/converters">
...
<datatype extension="biom1" type="galaxy.datatypes.data:Text" display_in_upload="True" subclass="True" mimetype="application/json" />
...
<registration />
Add the tools in galaxy tool_conf.xml.
Example:
...
<section id="FROGS_wrappers" name="FROGS">
<tool file="FROGS/app/upload_tar.xml" />
<tool file="FROGS/app/demultiplex.xml" />
<tool file="FROGS/app/preprocess.xml" />
<tool file="FROGS/app/clustering.xml" />
<tool file="FROGS/app/remove_chimera.xml" />
<tool file="FROGS/app/filters.xml" />
<tool file="FROGS/app/affiliation_OTU.xml" />
<tool file="FROGS/app/clusters_stat.xml" />
<tool file="FROGS/app/affiliations_stat.xml" />
<tool file="FROGS/app/biom_to_stdBiom.xml" />
<tool file="FROGS/app/biom_to_tsv.xml" />
<tool file="FROGS/app/tsv_to_biom.xml" />
<tool file="FROGS/app/normalisation.xml" />
</section>
...
If you have more than one CPU, it is recommended to increase the number
of CPUs used by tools.
All the CPUs must be on the same computer/node.
a] Specifications
Tool RAM/CPU Minimal RAM Configuration example
affiliation - 20 Gb 30 CPUs and 300 GB
chimera 3 Gb 5 Gb 12 CPUs and 36 GB
clustering - 10 Gb 16 CPUs and 60 GB
preprocess 8 Gb - 12 CPUs and 96 GB
b] Change the number of CPUs used
Each tool with parallelisation possibilities contains in its XML an
hidden parameter to set the number of used CPUs.
Example for 16 CPUs:
<param name="nb_cpus" type="hidden" label="CPU number" help="The maximum number of CPUs used." value="1" />
Is changed to :
<param name="nb_cpus" type="hidden" label="CPU number" help="The maximum number of CPUs used." value="16" />
c] Change the tool launcher configuration
In galaxy the job_conf.xml allows to change the scheduler
submission parameters.
Example for SGE scheduler:
<destinations>
...
<destination id="FROGS_preprocess_job" runner="drmaa">
<param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
<param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
<param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
<param id="nativeSpecification">-clear -q galaxyq -l mem=5G -l h_vmem=13G -pe parallel_smp 12</param>
</destination>
<destination id="FROGS_clustering_job" runner="drmaa">
<param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
<param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
<param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
<param id="nativeSpecification">-clear -q galaxyq -l mem=3G -l h_vmem=10G -pe parallel_smp 16</param>
</destination>
<destination id="FROGS_remove_chimera_job" runner="drmaa">
<param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
<param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
<param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
<param id="nativeSpecification">-clear -q galaxyq -l mem=3G -l h_vmem=4G -pe parallel_smp 12</param>
</destination>
<destination id="FROGS_affiliation_OTU_job" runner="drmaa">
<param id="galaxy_external_runjob_script">scripts/drmaa_external_runner.py</param>
<param id="galaxy_external_killjob_script">scripts/drmaa_external_killer.py</param>
<param id="galaxy_external_chown_script">scripts/external_chown_script.py</param>
<param id="nativeSpecification">-clear -q galaxyq -l mem=7G -l h_vmem=10G -pe parallel_smp 30</param>
</destination>
</destinations>
<tools>
...
<tool id="FROGS_preprocess" destination="FROGS_preprocess_job"/>
<tool id="FROGS_clustering" destination="FROGS_clustering_job"/>
<tool id="FROGS_remove_chimera" destination="FROGS_remove_chimera_job"/>
<tool id="FROGS_affiliation_OTU" destination="FROGS_affiliation_OTU_job"/>
</tools>
a] Assignation databank
- Upload databanks and indexes from http://genoweb.toulouse.inra.fr/frogs_databanks/assignation
- Extract databanks.
- To use these databank, you need to create a .loc file named
'frogs_db.loc'. The path provided must be the '.fasta'.
b] Contaminant databank
- Upload databank and indexes from http://genoweb.toulouse.inra.fr/frogs_databanks/contaminants
- Extract databank.
- To use this databank, you need to create a .loc file named
'phiX_db.loc'. The path provided must be the '.fasta'.
The tools help contain images. These images must be in galaxy images
static folder.
ln -s <FROGS_PATH>/img <GALAXY_DIR>/static/images/tools/frogs
With certain old versions of glibc the virtual memory used by CPU is
multiplicative.
Nb CPUs expected RAM consumtion observed RAM consumption
1 1Gb 1Gb
2 2Gb 2*2Gb
3 3Gb 3*3Gb
4 5Gb 4*4Gb
The parameters memory and CPU provided in examples take into account
this problem.
With large database like silva NR the RDPClassifier opens automatically
a large number of threads. These threads use all the available CPU
ressources. This is not an acceptable behaviour in multi-user context.
To prevent this behaviour the tool 'affiliation_OTU' uses taskset to
force RDPClassifier to run only on the specified number of CPUs. The
number of threads is not changed but the CPU consumption is controled.
GNU GPL v3
2015 INRA
Escudie F., Auer L., Bernard M., Cauquil L., Vidal K., Maman S.,
Mariadassou M., Hernadez-Raquet G., Pascal G., 2015. FROGS: Find Rapidly
OTU with Galaxy Solution. In: The environmental genomic Conference,
Montpellier, France