forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterators.jl
1118 lines (918 loc) · 31.3 KB
/
iterators.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Methods for working with Iterators.
"""
module Iterators
# small dance to make this work from Base or Intrinsics
import ..@__MODULE__, ..parentmodule
const Base = parentmodule(@__MODULE__)
using .Base:
@inline, Pair, AbstractDict, IndexLinear, IndexCartesian, IndexStyle, AbstractVector, Vector,
tail, tuple_type_head, tuple_type_tail, tuple_type_cons, SizeUnknown, HasLength, HasShape,
IsInfinite, EltypeUnknown, HasEltype, OneTo, @propagate_inbounds, Generator, AbstractRange,
linearindices, (:), |, +, -, !==, !, <=, <
import .Base:
start, done, next, first, last,
isempty, length, size, axes, ndims,
eltype, IteratorSize, IteratorEltype,
haskey, keys, values, pairs,
getindex, setindex!, get, popfirst!,
peek
export enumerate, zip, rest, countfrom, take, drop, cycle, repeated, product, flatten, partition
_min_length(a, b, ::IsInfinite, ::IsInfinite) = min(length(a),length(b)) # inherit behaviour, error
_min_length(a, b, A, ::IsInfinite) = length(a)
_min_length(a, b, ::IsInfinite, B) = length(b)
_min_length(a, b, A, B) = min(length(a),length(b))
_diff_length(a, b, A, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, B) = length(a) # inherit behaviour, error
_diff_length(a, b, A, B) = max(length(a)-length(b), 0)
and_iteratorsize(isz::T, ::T) where {T} = isz
and_iteratorsize(::HasLength, ::HasShape) = HasLength()
and_iteratorsize(::HasShape, ::HasLength) = HasLength()
and_iteratorsize(a, b) = SizeUnknown()
and_iteratoreltype(iel::T, ::T) where {T} = iel
and_iteratoreltype(a, b) = EltypeUnknown()
## Reverse-order iteration for arrays and other collections. Collections
## should implement start/next/done etcetera if possible/practical.
"""
Iterators.reverse(itr)
Given an iterator `itr`, then `reverse(itr)` is an iterator over the
same collection but in the reverse order.
This iterator is "lazy" in that it does not make a copy of the collection in
order to reverse it; see [`Base.reverse`](@ref) for an eager implementation.
Not all iterator types `T` support reverse-order iteration. If `T`
doesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)
because of the missing [`start`](@ref), [`next`](@ref), and [`done`](@ref)
methods for `Iterators.Reverse{T}`. (To implement these methods, the original iterator
`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)
# Examples
```jldoctest
julia> foreach(println, Iterators.reverse(1:5))
5
4
3
2
1
```
"""
reverse(itr) = Reverse(itr)
struct Reverse{T}
itr::T
end
eltype(::Type{Reverse{T}}) where {T} = eltype(T)
length(r::Reverse) = length(r.itr)
size(r::Reverse) = size(r.itr)
IteratorSize(::Type{Reverse{T}}) where {T} = IteratorSize(T)
IteratorEltype(::Type{Reverse{T}}) where {T} = IteratorEltype(T)
last(r::Reverse) = first(r.itr) # the first shall be last
first(r::Reverse) = last(r.itr) # and the last shall be first
# reverse-order array iterators: assumes more-specialized Reverse for eachindex
@inline start(A::Reverse{<:AbstractArray}) = (itr = reverse(eachindex(A.itr)); (itr, start(itr)))
@propagate_inbounds next(A::Reverse{<:AbstractArray}, i) = ((idx, s) = next(i[1], i[2]); (A.itr[idx], (i[1], s)))
@propagate_inbounds done(A::Reverse{<:AbstractArray}, i) = done(i[1], i[2])
reverse(R::AbstractRange) = Base.reverse(R) # copying ranges is cheap
reverse(G::Generator) = Generator(G.f, reverse(G.iter))
reverse(r::Reverse) = r.itr
reverse(x::Union{Number,AbstractChar}) = x
reverse(p::Pair) = Base.reverse(p) # copying pairs is cheap
start(r::Reverse{<:Tuple}) = length(r.itr)
done(r::Reverse{<:Tuple}, i::Int) = i < 1
next(r::Reverse{<:Tuple}, i::Int) = (r.itr[i], i-1)
# enumerate
struct Enumerate{I}
itr::I
end
"""
enumerate(iter)
An iterator that yields `(i, x)` where `i` is a counter starting at 1,
and `x` is the `i`th value from the given iterator. It's useful when
you need not only the values `x` over which you are iterating, but
also the number of iterations so far. Note that `i` may not be valid
for indexing `iter`; it's also possible that `x != iter[i]`, if `iter`
has indices that do not start at 1. See the `enumerate(IndexLinear(),
iter)` method if you want to ensure that `i` is an index.
# Examples
```jldoctest
julia> a = ["a", "b", "c"];
julia> for (index, value) in enumerate(a)
println("\$index \$value")
end
1 a
2 b
3 c
```
"""
enumerate(iter) = Enumerate(iter)
length(e::Enumerate) = length(e.itr)
size(e::Enumerate) = size(e.itr)
@inline start(e::Enumerate) = (1, start(e.itr))
@propagate_inbounds function next(e::Enumerate, state)
n = next(e.itr,state[2])
(state[1],n[1]), (state[1]+1,n[2])
end
@inline done(e::Enumerate, state) = done(e.itr, state[2])
eltype(::Type{Enumerate{I}}) where {I} = Tuple{Int, eltype(I)}
IteratorSize(::Type{Enumerate{I}}) where {I} = IteratorSize(I)
IteratorEltype(::Type{Enumerate{I}}) where {I} = IteratorEltype(I)
@inline function start(r::Reverse{<:Enumerate})
ri = reverse(r.itr.itr)
return (length(ri), ri, start(ri))
end
@inline function next(r::Reverse{<:Enumerate}, state)
n = next(state[2],state[3])
(state[1],n[1]), (state[1]-1,state[2],n[2])
end
@inline done(r::Reverse{<:Enumerate}, state) = state[1] < 1
"""
Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}
Transforms an indexable container into an Dictionary-view of the same data.
Modifying the key-space of the underlying data may invalidate this object.
"""
struct Pairs{K, V, I, A} <: AbstractDict{K, V}
data::A
itr::I
Pairs(data::A, itr::I) where {A, I} = new{eltype(I), eltype(A), I, A}(data, itr)
end
"""
pairs(IndexLinear(), A)
pairs(IndexCartesian(), A)
pairs(IndexStyle(A), A)
An iterator that accesses each element of the array `A`, returning
`i => x`, where `i` is the index for the element and `x = A[i]`.
Identical to `pairs(A)`, except that the style of index can be selected.
Also similar to `enumerate(A)`, except `i` will be a valid index
for `A`, while `enumerate` always counts from 1 regardless of the indices
of `A`.
Specifying `IndexLinear()` ensures that `i` will be an integer;
specifying `IndexCartesian()` ensures that `i` will be a
`CartesianIndex`; specifying `IndexStyle(A)` chooses whichever has
been defined as the native indexing style for array `A`.
Mutation of the bounds of the underlying array will invalidate this iterator.
# Examples
```jldoctest
julia> A = ["a" "d"; "b" "e"; "c" "f"];
julia> for (index, value) in pairs(IndexStyle(A), A)
println("\$index \$value")
end
1 a
2 b
3 c
4 d
5 e
6 f
julia> S = view(A, 1:2, :);
julia> for (index, value) in pairs(IndexStyle(S), S)
println("\$index \$value")
end
CartesianIndex(1, 1) a
CartesianIndex(2, 1) b
CartesianIndex(1, 2) d
CartesianIndex(2, 2) e
```
See also: [`IndexStyle`](@ref), [`axes`](@ref).
"""
pairs(::IndexLinear, A::AbstractArray) = Pairs(A, linearindices(A))
pairs(::IndexCartesian, A::AbstractArray) = Pairs(A, CartesianIndices(axes(A)))
# preserve indexing capabilities for known indexable types
# faster than zip(keys(a), values(a)) for arrays
pairs(A::AbstractArray) = pairs(IndexCartesian(), A)
pairs(A::AbstractVector) = pairs(IndexLinear(), A)
pairs(tuple::Tuple) = Pairs(tuple, keys(tuple))
pairs(nt::NamedTuple) = Pairs(nt, keys(nt))
# pairs(v::Pairs) = v # listed for reference, but already defined from being an AbstractDict
length(v::Pairs) = length(v.itr)
axes(v::Pairs) = axes(v.itr)
size(v::Pairs) = size(v.itr)
@inline start(v::Pairs) = start(v.itr)
@propagate_inbounds function next(v::Pairs{K, V}, state) where {K, V}
indx, n = next(v.itr, state)
item = v.data[indx]
return (Pair{K, V}(indx, item), n)
end
@inline done(v::Pairs, state) = done(v.itr, state)
eltype(::Type{Pairs{K, V}}) where {K, V} = Pair{K, V}
IteratorSize(::Type{Pairs{<:Any, <:Any, I}}) where {I} = IteratorSize(I)
IteratorEltype(::Type{Pairs{<:Any, <:Any, I}}) where {I} = IteratorEltype(I)
reverse(v::Pairs) = Pairs(v.data, reverse(v.itr))
haskey(v::Pairs, key) = (key in v.itr)
keys(v::Pairs) = v.itr
values(v::Pairs) = v.data
getindex(v::Pairs, key) = v.data[key]
setindex!(v::Pairs, value, key) = (v.data[key] = value; v)
get(v::Pairs, key, default) = get(v.data, key, default)
get(f::Base.Callable, collection::Pairs, key) = get(f, v.data, key)
# zip
abstract type AbstractZipIterator end
zip_iteratorsize(a, b) = and_iteratorsize(a,b) # as `and_iteratorsize` but inherit `Union{HasLength,IsInfinite}` of the shorter iterator
zip_iteratorsize(::HasLength, ::IsInfinite) = HasLength()
zip_iteratorsize(::HasShape, ::IsInfinite) = HasLength()
zip_iteratorsize(a::IsInfinite, b) = zip_iteratorsize(b,a)
zip_iteratorsize(a::IsInfinite, b::IsInfinite) = IsInfinite()
struct Zip1{I} <: AbstractZipIterator
a::I
end
zip(a) = Zip1(a)
length(z::Zip1) = length(z.a)
size(z::Zip1) = size(z.a)
axes(z::Zip1) = axes(z.a)
eltype(::Type{Zip1{I}}) where {I} = Tuple{eltype(I)}
@inline start(z::Zip1) = start(z.a)
@propagate_inbounds function next(z::Zip1, st)
n = next(z.a,st)
return ((n[1],), n[2])
end
@inline done(z::Zip1, st) = done(z.a,st)
IteratorSize(::Type{Zip1{I}}) where {I} = IteratorSize(I)
IteratorEltype(::Type{Zip1{I}}) where {I} = IteratorEltype(I)
struct Zip2{I1, I2} <: AbstractZipIterator
a::I1
b::I2
end
zip(a, b) = Zip2(a, b)
length(z::Zip2) = _min_length(z.a, z.b, IteratorSize(z.a), IteratorSize(z.b))
size(z::Zip2) = promote_shape(size(z.a), size(z.b))
axes(z::Zip2) = promote_shape(axes(z.a), axes(z.b))
eltype(::Type{Zip2{I1,I2}}) where {I1,I2} = Tuple{eltype(I1), eltype(I2)}
@inline start(z::Zip2) = (start(z.a), start(z.b))
@propagate_inbounds function next(z::Zip2, st)
n1 = next(z.a,st[1])
n2 = next(z.b,st[2])
return ((n1[1], n2[1]), (n1[2], n2[2]))
end
@inline done(z::Zip2, st) = done(z.a,st[1]) | done(z.b,st[2])
IteratorSize(::Type{Zip2{I1,I2}}) where {I1,I2} = zip_iteratorsize(IteratorSize(I1),IteratorSize(I2))
IteratorEltype(::Type{Zip2{I1,I2}}) where {I1,I2} = and_iteratoreltype(IteratorEltype(I1),IteratorEltype(I2))
struct Zip{I, Z<:AbstractZipIterator} <: AbstractZipIterator
a::I
z::Z
end
"""
zip(iters...)
For a set of iterable objects, return an iterable of tuples, where the `i`th tuple contains
the `i`th component of each input iterable.
# Examples
```jldoctest
julia> a = 1:5
1:5
julia> b = ["e","d","b","c","a"]
5-element Array{String,1}:
"e"
"d"
"b"
"c"
"a"
julia> c = zip(a,b)
Base.Iterators.Zip2{UnitRange{Int64},Array{String,1}}(1:5, ["e", "d", "b", "c", "a"])
julia> length(c)
5
julia> first(c)
(1, "e")
```
"""
zip(a, b, c...) = Zip(a, zip(b, c...))
length(z::Zip) = _min_length(z.a, z.z, IteratorSize(z.a), IteratorSize(z.z))
size(z::Zip) = promote_shape(size(z.a), size(z.z))
axes(z::Zip) = promote_shape(axes(z.a), axes(z.z))
eltype(::Type{Zip{I,Z}}) where {I,Z} = tuple_type_cons(eltype(I), eltype(Z))
@inline start(z::Zip) = tuple(start(z.a), start(z.z))
@propagate_inbounds function next(z::Zip, st)
n1 = next(z.a, st[1])
n2 = next(z.z, st[2])
(tuple(n1[1], n2[1]...), (n1[2], n2[2]))
end
@inline done(z::Zip, st) = done(z.a,st[1]) | done(z.z,st[2])
IteratorSize(::Type{Zip{I1,I2}}) where {I1,I2} = zip_iteratorsize(IteratorSize(I1),IteratorSize(I2))
IteratorEltype(::Type{Zip{I1,I2}}) where {I1,I2} = and_iteratoreltype(IteratorEltype(I1),IteratorEltype(I2))
reverse(z::Zip1) = Zip1(reverse(z.a))
reverse(z::Zip2) = Zip2(reverse(z.a), reverse(z.b))
reverse(z::Zip) = Zip(reverse(z.a), reverse(z.z))
# filter
struct Filter{F,I}
flt::F
itr::I
end
"""
Iterators.filter(flt, itr)
Given a predicate function `flt` and an iterable object `itr`, return an
iterable object which upon iteration yields the elements `x` of `itr` that
satisfy `flt(x)`. The order of the original iterator is preserved.
This function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time
and use ``Θ(1)`` additional space, and `flt` will not be called by an
invocation of `filter`. Calls to `flt` will be made when iterating over the
returned iterable object. These calls are not cached and repeated calls will be
made when reiterating.
See [`Base.filter`](@ref) for an eager implementation of filtering for arrays.
# Examples
```jldoctest
julia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])
Base.Iterators.Filter{typeof(isodd),Array{Int64,1}}(isodd, [1, 2, 3, 4, 5])
julia> foreach(println, f)
1
3
5
```
"""
filter(flt, itr) = Filter(flt, itr)
start(f::Filter) = start_filter(f.flt, f.itr)
function start_filter(pred, itr)
s = start(itr)
while !done(itr,s)
v,t = next(itr,s)
if pred(v)
return (false, v, t)
end
s=t
end
(true,)
end
next(f::Filter, s) = advance_filter(f.flt, f.itr, s)
function advance_filter(pred, itr, st)
_, v, s = st
while !done(itr,s)
w,t = next(itr,s)
if pred(w)
return v, (false, w, t)
end
s=t
end
v, (true, v, s)
end
done(f::Filter, s) = s[1]
eltype(::Type{Filter{F,I}}) where {F,I} = eltype(I)
IteratorEltype(::Type{Filter{F,I}}) where {F,I} = IteratorEltype(I)
IteratorSize(::Type{<:Filter}) = SizeUnknown()
reverse(f::Filter) = Filter(f.flt, reverse(f.itr))
# Rest -- iterate starting at the given state
struct Rest{I,S}
itr::I
st::S
end
"""
rest(iter, state)
An iterator that yields the same elements as `iter`, but starting at the given `state`.
# Examples
```jldoctest
julia> collect(Iterators.rest([1,2,3,4], 2))
3-element Array{Any,1}:
2
3
4
```
"""
rest(itr,state) = Rest(itr,state)
"""
peel(iter)
Returns the first element and an iterator over the remaining elements.
# Example
```jldoctest
julia> (a, rest) = Iterators.peel("abc");
julia> a
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> collect(rest)
2-element Array{Char,1}:
'b'
'c'
```
"""
function peel(itr)
s = start(itr)
done(itr, s) && throw(BoundsError())
val, s = next(itr, s)
val, rest(itr, s)
end
start(i::Rest) = i.st
@propagate_inbounds next(i::Rest, st) = next(i.itr, st)
done(i::Rest, st) = done(i.itr, st)
eltype(::Type{Rest{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Rest{I,S}}) where {I,S} = IteratorEltype(I)
rest_iteratorsize(a) = SizeUnknown()
rest_iteratorsize(::IsInfinite) = IsInfinite()
IteratorSize(::Type{Rest{I,S}}) where {I,S} = rest_iteratorsize(IteratorSize(I))
# Count -- infinite counting
struct Count{S<:Number}
start::S
step::S
end
"""
countfrom(start=1, step=1)
An iterator that counts forever, starting at `start` and incrementing by `step`.
# Examples
```jldoctest
julia> for v in Iterators.countfrom(5, 2)
v > 10 && break
println(v)
end
5
7
9
```
"""
countfrom(start::Number, step::Number) = Count(promote(start, step)...)
countfrom(start::Number) = Count(start, oneunit(start))
countfrom() = Count(1, 1)
eltype(::Type{Count{S}}) where {S} = S
start(it::Count) = it.start
next(it::Count, state) = (state, state + it.step)
done(it::Count, state) = false
IteratorSize(::Type{<:Count}) = IsInfinite()
# Take -- iterate through the first n elements
struct Take{I}
xs::I
n::Int
function Take(xs::I, n::Integer) where {I}
n < 0 && throw(ArgumentError("Take length must be nonnegative"))
return new{I}(xs, n)
end
end
"""
take(iter, n)
An iterator that generates at most the first `n` elements of `iter`.
# Examples
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Array{Int64,1}:
1
3
5
7
9
11
julia> collect(Iterators.take(a,3))
3-element Array{Int64,1}:
1
3
5
```
"""
take(xs, n::Integer) = Take(xs, Int(n))
take(xs::Take, n::Integer) = Take(xs.xs, min(Int(n), xs.n))
eltype(::Type{Take{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Take{I}}) where {I} = IteratorEltype(I)
take_iteratorsize(a) = HasLength()
take_iteratorsize(::SizeUnknown) = SizeUnknown()
IteratorSize(::Type{Take{I}}) where {I} = take_iteratorsize(IteratorSize(I))
length(t::Take) = _min_length(t.xs, 1:t.n, IteratorSize(t.xs), HasLength())
start(it::Take) = (it.n, start(it.xs))
@propagate_inbounds function next(it::Take, state)
n, xs_state = state
v, xs_state = next(it.xs, xs_state)
return v, (n - 1, xs_state)
end
function done(it::Take, state)
n, xs_state = state
return n <= 0 || done(it.xs, xs_state)
end
# Drop -- iterator through all but the first n elements
struct Drop{I}
xs::I
n::Int
function Drop(xs::I, n::Integer) where {I}
n < 0 && throw(ArgumentError("Drop length must be nonnegative"))
return new{I}(xs, n)
end
end
"""
drop(iter, n)
An iterator that generates all but the first `n` elements of `iter`.
# Examples
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Array{Int64,1}:
1
3
5
7
9
11
julia> collect(Iterators.drop(a,4))
2-element Array{Int64,1}:
9
11
```
"""
drop(xs, n::Integer) = Drop(xs, Int(n))
drop(xs::Take, n::Integer) = Take(drop(xs.xs, Int(n)), max(0, xs.n - Int(n)))
drop(xs::Drop, n::Integer) = Drop(xs.xs, Int(n) + xs.n)
eltype(::Type{Drop{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Drop{I}}) where {I} = IteratorEltype(I)
drop_iteratorsize(::SizeUnknown) = SizeUnknown()
drop_iteratorsize(::Union{HasShape, HasLength}) = HasLength()
drop_iteratorsize(::IsInfinite) = IsInfinite()
IteratorSize(::Type{Drop{I}}) where {I} = drop_iteratorsize(IteratorSize(I))
length(d::Drop) = _diff_length(d.xs, 1:d.n, IteratorSize(d.xs), HasLength())
function start(it::Drop)
xs_state = start(it.xs)
for i in 1:it.n
if done(it.xs, xs_state)
break
end
_, xs_state = next(it.xs, xs_state)
end
xs_state
end
@propagate_inbounds next(it::Drop, state) = next(it.xs, state)
done(it::Drop, state) = done(it.xs, state)
# Cycle an iterator forever
struct Cycle{I}
xs::I
end
"""
cycle(iter)
An iterator that cycles through `iter` forever.
# Examples
```jldoctest
julia> for (i, v) in enumerate(Iterators.cycle("hello"))
print(v)
i > 10 && break
end
hellohelloh
```
"""
cycle(xs) = Cycle(xs)
eltype(::Type{Cycle{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Cycle{I}}) where {I} = IteratorEltype(I)
IteratorSize(::Type{Cycle{I}}) where {I} = IsInfinite()
function start(it::Cycle)
s = start(it.xs)
return s, done(it.xs, s)
end
function next(it::Cycle, state)
s, d = state
if done(it.xs, s)
s = start(it.xs)
end
v, s = next(it.xs, s)
return v, (s, false)
end
done(it::Cycle, state) = state[2]
reverse(it::Cycle) = Cycle(reverse(it.xs))
# Repeated - repeat an object infinitely many times
struct Repeated{O}
x::O
end
repeated(x) = Repeated(x)
"""
repeated(x[, n::Int])
An iterator that generates the value `x` forever. If `n` is specified, generates `x` that
many times (equivalent to `take(repeated(x), n)`).
# Examples
```jldoctest
julia> a = Iterators.repeated([1 2], 4);
julia> collect(a)
4-element Array{Array{Int64,2},1}:
[1 2]
[1 2]
[1 2]
[1 2]
```
"""
repeated(x, n::Integer) = take(repeated(x), Int(n))
eltype(::Type{Repeated{O}}) where {O} = O
start(it::Repeated) = nothing
next(it::Repeated, state) = (it.x, nothing)
done(it::Repeated, state) = false
IteratorSize(::Type{<:Repeated}) = IsInfinite()
IteratorEltype(::Type{<:Repeated}) = HasEltype()
reverse(it::Union{Repeated,Take{<:Repeated}}) = it
# Product -- cartesian product of iterators
struct ProductIterator{T<:Tuple}
iterators::T
end
"""
product(iters...)
Return an iterator over the product of several iterators. Each generated element is
a tuple whose `i`th element comes from the `i`th argument iterator. The first iterator
changes the fastest.
# Examples
```jldoctest
julia> collect(Iterators.product(1:2,3:5))
2×3 Array{Tuple{Int64,Int64},2}:
(1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
```
"""
product(iters...) = ProductIterator(iters)
IteratorSize(::Type{ProductIterator{Tuple{}}}) = HasShape{0}()
IteratorSize(::Type{ProductIterator{T}}) where {T<:Tuple} =
prod_iteratorsize( IteratorSize(tuple_type_head(T)), IteratorSize(ProductIterator{tuple_type_tail(T)}) )
prod_iteratorsize(::HasLength, ::HasLength) = HasShape{2}()
prod_iteratorsize(::HasLength, ::HasShape{N}) where {N} = HasShape{N+1}()
prod_iteratorsize(::HasShape{N}, ::HasLength) where {N} = HasShape{N+1}()
prod_iteratorsize(::HasShape{M}, ::HasShape{N}) where {M,N} = HasShape{M+N}()
# products can have an infinite iterator
prod_iteratorsize(::IsInfinite, ::IsInfinite) = IsInfinite()
prod_iteratorsize(a, ::IsInfinite) = IsInfinite()
prod_iteratorsize(::IsInfinite, b) = IsInfinite()
prod_iteratorsize(a, b) = SizeUnknown()
size(P::ProductIterator) = _prod_size(P.iterators)
_prod_size(::Tuple{}) = ()
_prod_size(t::Tuple) = (_prod_size1(t[1], IteratorSize(t[1]))..., _prod_size(tail(t))...)
_prod_size1(a, ::HasShape) = size(a)
_prod_size1(a, ::HasLength) = (length(a),)
_prod_size1(a, A) =
throw(ArgumentError("Cannot compute size for object of type $(typeof(a))"))
axes(P::ProductIterator) = _prod_indices(P.iterators)
_prod_indices(::Tuple{}) = ()
_prod_indices(t::Tuple) = (_prod_indices1(t[1], IteratorSize(t[1]))..., _prod_indices(tail(t))...)
_prod_indices1(a, ::HasShape) = axes(a)
_prod_indices1(a, ::HasLength) = (OneTo(length(a)),)
_prod_indices1(a, A) =
throw(ArgumentError("Cannot compute indices for object of type $(typeof(a))"))
ndims(p::ProductIterator) = length(axes(p))
length(P::ProductIterator) = prod(size(P))
_length(p::ProductIterator) = prod(map(unsafe_length, axes(p)))
IteratorEltype(::Type{ProductIterator{Tuple{}}}) = HasEltype()
IteratorEltype(::Type{ProductIterator{Tuple{I}}}) where {I} = IteratorEltype(I)
function IteratorEltype(::Type{ProductIterator{T}}) where {T<:Tuple}
I = tuple_type_head(T)
P = ProductIterator{tuple_type_tail(T)}
IteratorEltype(I) == EltypeUnknown() ? EltypeUnknown() : IteratorEltype(P)
end
eltype(::Type{<:ProductIterator{I}}) where {I} = _prod_eltype(I)
_prod_eltype(::Type{Tuple{}}) = Tuple{}
_prod_eltype(::Type{I}) where {I<:Tuple} =
Base.tuple_type_cons(eltype(tuple_type_head(I)),_prod_eltype(tuple_type_tail(I)))
start(::ProductIterator{Tuple{}}) = false
next(::ProductIterator{Tuple{}}, state) = (), true
done(::ProductIterator{Tuple{}}, state) = state
function start(P::ProductIterator)
iterators = P.iterators
iter1 = first(iterators)
state1 = start(iter1)
d, states, nvalues = _prod_start(tail(iterators))
d |= done(iter1, state1)
return (d, (state1, states...), nvalues)
end
function next(P::ProductIterator, state)
iterators = P.iterators
d, states, nvalues = state
iter1 = first(iterators)
value1, state1 = next(iter1, states[1])
tailstates = tail(states)
values = (value1, map(get, nvalues)...) # safe if not done(P, state)
if done(iter1, state1)
d, tailstates, nvalues = _prod_next(tail(iterators), tailstates, nvalues)
if !d # only restart iter1 if not completely done
state1 = start(iter1)
end
end
return values, (d, (state1, tailstates...), nvalues)
end
done(P::ProductIterator, state) = state[1]
struct MaybeValue{T}
x::T
MaybeValue{T}() where {T} = new{T}()
MaybeValue{T}(x::T) where {T} = new{T}(x)
end
get(v::MaybeValue) = v.x
_prod_start(iterators::Tuple{}) = false, (), ()
function _prod_start(iterators)
iter1 = first(iterators)
state1 = start(iter1)
d, tailstates, tailnvalues = _prod_start(tail(iterators))
if done(iter1, state1)
d = true
nvalue1 = MaybeValue{eltype(iter1)}()
else
value1, state1 = next(iter1, state1)
nvalue1 = MaybeValue{eltype(iter1)}(value1)
end
return (d, (state1, tailstates...), (nvalue1, tailnvalues...))
end
_prod_next(iterators::Tuple{}, states, nvalues) = true, (), ()
function _prod_next(iterators, states, nvalues)
iter1 = first(iterators)
state1 = first(states)
if !done(iter1, state1)
value1, state1 = next(iter1, state1)
nvalue1 = MaybeValue{eltype(iter1)}(value1)
return false, (state1, tail(states)...), (nvalue1, tail(nvalues)...)
else
d, tailstates, tailnvalues = _prod_next(tail(iterators), tail(states), tail(nvalues))
if d # all iterators are done
nvalue1 = MaybeValue{eltype(iter1)}()
else
value1, state1 = next(iter1, start(iter1)) # iter cannot be done immediately
nvalue1 = MaybeValue{eltype(iter1)}(value1)
end
return d, (state1, tailstates...), (nvalue1, tailnvalues...)
end
end
reverse(p::ProductIterator) = ProductIterator(map(reverse, p.iterators))
# flatten an iterator of iterators
struct Flatten{I}
it::I
end
"""
flatten(iter)
Given an iterator that yields iterators, return an iterator that yields the
elements of those iterators.
Put differently, the elements of the argument iterator are concatenated.
# Examples
```jldoctest
julia> collect(Iterators.flatten((1:2, 8:9)))
4-element Array{Int64,1}:
1
2
8
9
```
"""
flatten(itr) = Flatten(itr)
eltype(::Type{Flatten{I}}) where {I} = eltype(eltype(I))
IteratorEltype(::Type{Flatten{I}}) where {I} = _flatteneltype(I, IteratorEltype(I))
_flatteneltype(I, ::HasEltype) = IteratorEltype(eltype(I))
_flatteneltype(I, et) = EltypeUnknown()
flatten_iteratorsize(::Union{HasShape, HasLength}, ::Type{<:NTuple{N,Any}}) where {N} = HasLength()
flatten_iteratorsize(::Union{HasShape, HasLength}, ::Type{<:Tuple}) = SizeUnknown()
flatten_iteratorsize(::Union{HasShape, HasLength}, ::Type{<:Number}) = HasLength()
flatten_iteratorsize(a, b) = SizeUnknown()
IteratorSize(::Type{Flatten{I}}) where {I} = flatten_iteratorsize(IteratorSize(I), eltype(I))
function flatten_length(f, T::Type{<:NTuple{N,Any}}) where {N}
fieldcount(T)*length(f.it)
end
flatten_length(f, ::Type{<:Number}) = length(f.it)
flatten_length(f, T) = throw(ArgumentError(
"Iterates of the argument to Flatten are not known to have constant length"))
length(f::Flatten{I}) where {I} = flatten_length(f, eltype(I))
function start(f::Flatten)
local inner, s2
s = start(f.it)
d = done(f.it, s)
# this is a simple way to make this function type stable
d && throw(ArgumentError("argument to Flatten must contain at least one iterator"))
while !d
inner, s = next(f.it, s)
s2 = start(inner)
!done(inner, s2) && break
d = done(f.it, s)
end
return s, inner, s2
end
@propagate_inbounds function next(f::Flatten, state)
s, inner, s2 = state
val, s2 = next(inner, s2)
while done(inner, s2) && !done(f.it, s)
inner, s = next(f.it, s)
s2 = start(inner)
end
return val, (s, inner, s2)
end
@inline function done(f::Flatten, state)
s, inner, s2 = state
return done(f.it, s) && done(inner, s2)
end
reverse(f::Flatten) = Flatten(reverse(itr) for itr in reverse(f.it))
"""
partition(collection, n)
Iterate over a collection `n` elements at a time.
# Examples
```jldoctest
julia> collect(Iterators.partition([1,2,3,4,5], 2))
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5]
```
"""
partition(c::T, n::Integer) where {T} = PartitionIterator{T}(c, Int(n))
struct PartitionIterator{T}
c::T
n::Int
end
eltype(::Type{PartitionIterator{T}}) where {T} = Vector{eltype(T)}
partition_iteratorsize(::HasShape) = HasLength()
partition_iteratorsize(isz) = isz
function IteratorSize(::Type{PartitionIterator{T}}) where {T}
partition_iteratorsize(IteratorSize(T))
end
function length(itr::PartitionIterator)
l = length(itr.c)
return div(l, itr.n) + ((mod(l, itr.n) > 0) ? 1 : 0)
end
start(itr::PartitionIterator) = start(itr.c)
done(itr::PartitionIterator, state) = done(itr.c, state)
function next(itr::PartitionIterator{<:Vector}, state)
l = state
r = min(state + itr.n-1, length(itr.c))
return view(itr.c, l:r), r + 1
end
function next(itr::PartitionIterator, state)
v = Vector{eltype(itr.c)}(undef, itr.n)
i = 0
while !done(itr.c, state) && i < itr.n
i += 1
v[i], state = next(itr.c, state)
end
return resize!(v, i), state
end
"""
Stateful(itr)
There are several different ways to think about this iterator wrapper:
1. It provides a mutable wrapper around an iterator and