Skip to content

Deep Learning NLP Pipeline implemented on Tensorflow

License

Notifications You must be signed in to change notification settings

virginiadb/deepnlp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About 'deepnlp'

Deep Learning NLP Pipeline implemented on Tensorflow. Following the 'simplicity' rule, this project aims to use the deep learning library of Tensorflow platform to implement new NLP pipeline. You can extend the project to train models with your corpus/languages. Pretrained models of Chinese corpus are also distributed.

Brief Introduction

Modules

  • NLP Pipeline Modules:

    • Word Segmentation/Tokenization
    • Part-of-speech (POS)
    • Named-entity-recognition(NER)
    • Planed: Parsing, Automatic Summarization
  • Algorithm(Closely following the state-of-Art)

    • Word Segmentation: Linear Chain CRF(conditional-random-field), based on python CRF++ module
    • POS: LSTM/BI-LSTM network, based on Tensorflow
    • NER: LSTM/BI-LSTM/LSTM-CRF network, based on Tensorflow
  • Pre-trained Model

    • Chinese: Segmentation, POS, NER (1998 china daily corpus)
    • English: POS (brown corpus)
    • For your Specific Language, you can easily use the script to train model with the corpus of your language choice.

Installation

  • Requirements
    • python2/python3 Both are supported, and the default coding is unicode for version compatibility reason
    • Tensorflow(>=0.10.0) Make sure to have the possibly latest release, many modules e.g. LSTM tuple states change a lot.
    • CRF++ (>=0.54)
# Download CRF++-0.58.tar.gz from: https://taku910.github.io/crfpp/
tar xzvf CRF++-0.58.tar.gz
cd CRF++-0.58
./configure
make && sudo make install

# Go to source subfolder python and install python api
cd python
python setup.py build
python setup.py install
ln -s /usr/local/lib/libcrfpp.so.0 /usr/lib/

# Potential installation Errors: 
ImportError: libcrfpp.so.0: cannot open shared object file: No such file or directory
Remember to ln /usr/local/lib/libcrfpp.so.0 to /usr/lib/
  • Pip
    # windows: tensorflow is not supported on windows right now, so is deepnlp
    # linux, run the script:
    
    pip install deepnlp
    
    # Due to pkg size restriction, english pos model, ner model files are not distributed on pypi
    # You can download the pre-trained model files from github and put in your installation directory .../site-packages/.../deepnlp/...
    # model files: ../pos/ckpt/en/pos.ckpt  ; ../ner/ckpt/zh/ner.ckpt
    
    # linux, run the script:
    tar zxvf deepnlp-0.1.5.tar.gz
    cd deepnlp-0.1.5
    python setup.py install
  • Running Test scripts
    # linux, run the script:
    cd test
    python test_pos_en.py
    python test_segmenter.py
    python test_pos_zh.py
    # Check if output is correct

Tutorial

Set Coding 设置编码 For python2, the default coding is ascii not unicode, use future module to make it compatible with python3

#coding=utf-8
from __future__ import unicode_literals # compatible with python3 unicode

Segmentation

分词模块

#coding=utf-8
from __future__ import unicode_literals

from deepnlp import segmenter

text = "我爱吃北京烤鸭"
segList = segmenter.seg(text)
text_seg = " ".join(segList)

print (text.encode('utf-8'))
print (text_seg.encode('utf-8'))

POS

词性标注

#coding:utf-8
from __future__ import unicode_literals

## English Model
from deepnlp import pos_tagger
tagger = pos_tagger.load_model(lang = 'en')  # Loading English model, lang code 'en', English Model Brown Corpus

#Segmentation
text = "I will see a funny movie"
words = text.split(" ")     # unicode
print (" ".join(words).encode('utf-8'))

#POS Tagging
tagging = tagger.predict(words)
for (w,t) in tagging:
    str = w + "/" + t
    print (str.encode('utf-8'))


#coding:utf-8
from __future__ import unicode_literals

## Chinese Model
from deepnlp import segmenter
from deepnlp import pos_tagger
tagger = pos_tagger.load_model(lang = 'zh') # Loading Chinese model, lang code 'zh', China Daily Corpus

#Segmentation
text = "我爱吃北京烤鸭"
words = segmenter.seg(text) # words in unicode coding
print (" ".join(words).encode('utf-8'))

#POS Tagging
tagging = tagger.predict(words)  # input: unicode coding
for (w,t) in tagging:
    str = w + "/" + t
    print (str.encode('utf-8'))

#Results
#我/r 爱/v 吃/v 北京/ns 烤鸭/n

NER

命名实体识别

#coding:utf-8
from __future__ import unicode_literals

from deepnlp import segmenter
from deepnlp import ner_tagger
tagger = ner_tagger.load_model(lang = 'zh') # Loading Chinese NER model

#Segmentation
text = "我爱吃北京烤鸭"
words = segmenter.seg(text)
print (" ".join(words).encode('utf-8'))

#NER tagging
tagging = tagger.predict(words)
for (w,t) in tagging:
    str = w + "/" + t
    print (str.encode('utf-8'))

#Results
#我/nt 爱/nt 吃/nt 北京/p 烤鸭/nt

Pipeline

#coding:utf-8
from __future__ import unicode_literals

from deepnlp import pipeline
p = pipeline.load_model('zh')

#Segmentation
text = "我爱吃北京烤鸭"
res = p.analyze(text)

print (res[0].encode('utf-8'))
print (res[1].encode('utf-8'))
print (res[2].encode('utf-8'))

words = p.segment(text)
pos_tagging = p.tag_pos(words)
ner_tagging = p.tag_ner(words)

print (pos_tagging.encode('utf-8'))
print (ner_tagging.encode('utf-8'))

Train your model

自己训练模型 ###Segment model Install CRF++ 0.58 Follow the instructions https://taku910.github.io/crfpp/#download

Folder Structure

/deepnlp
./segment
..data_util.py
..train_crf.sh
../data
...template
...train.txt
...train_word_tag.txt

Prepare corpus

Split your data into train.txt and test.txt with format of one sentence per each line: "word1 word2 ...". Put train.txt and test.txt under folder ../deepnlp/segment/data Run data_util.py to convert data file to word_tag format and get train_word_tag.txt; For Chinese, we are using 4 tags representing: 'B' Begnning , 'M' Middle, 'E' End and 'S' Single Char

'S''B''E'
...
python data_util.py train.txt train_word_tag.txt

Define template file needed by CRF++

Sample Template file is included in the package You can specift the unigram and bigram feature template needed by CRF++

Train model using CRF++ module

# Train Model Using CRF++ command
crf_learn -f 3 -c 4.0 ${LOCAL_PATH}/data/template ${LOCAL_PATH}/data/train_word_tag.txt crf_model

###POS model

Folder Structure

/deepnlp
./pos
..pos_model.py
..reader.py
../data
.../en
....train.txt
....dev.txt
....test.txt
.../zh
....train.txt
....dev.txt
....test.txt
../ckpt
.../en
.../zh

Prepare corpus

First, prepare your corpus and split into 3 files: 'train.txt', 'dev.txt', 'test.txt'. Each line in the file represents one annotated sentence, in this format: "word1/tag1 word2/tag2 ...", separated by white space.

#train.txt
#English:
POS/NN tagging/NN is/VBZ now/RB done/VBN in/IN the/DT context/NN of/IN computational/JJ linguistics/NNS ./.

#Chinese:
充满/v  希望/n  /u  /a  世纪/n  ——/w  一九九八年/t  新年/t  讲话/n/w  /v  图片/n/m  /q/w  

Specifying data_path

So model can find training data files. Download the source of package and put all three corpus files in the folder ../deepnlp/pos/data/zh for your specific language option, create subfolders .../data/'your_language_code' and .../ckpt/'your_language_code' you can change data_path setting in reader.py and pos_model.py

Running script

python pos_model.py en # LSTM model English

python pos_model.py zh # LSTM model Chinese

python pos_model_bilstm.py en # Bi-LSTM model English

python pos_model_bilstm.py zh # Bi-LSTM model Chinese

Trained model can be found under folder ../deepnlp/pos/ckpt/'your_language_code'

###NER model

Prepare corpus the same way as POS

Put data files in folder ../deepnlp/ner/data/'your_language_code'

Running script

python ner_model.py zh # training Chinese model

The trained model can be found under folder ../deepnlp/ner/ckpt/'your_language_code'

中文简介

deepnlp项目是基于Tensorflow平台的一个python版本的NLP套装, 目的在于将Tensorflow深度学习平台上的模块,结合 最新的一些算法,提供NLP基础模块的支持,并支持其他更加复杂的任务的拓展,如生成式文摘等等。

  • NLP 套装模块

    • 分词 Word Segmentation/Tokenization
    • 词性标注 Part-of-speech (POS)
    • 命名实体识别 Named-entity-recognition(NER)
    • 计划中: 句法分析 Parsing, 自动生成式文摘 Automatic Summarization
  • 算法实现

    • 分词: 线性链条件随机场 Linear Chain CRF, 基于CRF++包来实现
    • 词性标注: 单向LSTM/ 双向BI-LSTM, 基于Tensorflow实现
    • 命名实体识别: 单向LSTM/ 双向BI-LSTM/ LSTM-CRF 结合网络, 基于Tensorflow实现
  • 预训练模型

    • 中文: 基于人民日报语料和微博混合语料: 分词, 词性标注, 实体识别

安装说明

  • 需要

    • Tensorflow(>=0.10.0) Tensorflow 0.10.0 里的LSTM模块和以前版本相比有较大变化,所以尽量以最新的为基准;
    • CRF++ (>=0.54) 可以从 https://taku910.github.io/crfpp/ 下载安装
  • Pip 安装

    # windows: tensorflow is not supported on windows right now, so is deepnlp
    # linux, run the script:
    pip install deepnlp
    # linux, run the script:
    tar zxvf deepnlp-0.1.5.tar.gz
    cd deepnlp-0.1.5
    python setup.py install

Reference

About

Deep Learning NLP Pipeline implemented on Tensorflow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%