Skip to content

Tool for benchmarking GPU models for variety of tasks using pytorch and accelerate libraries

License

Notifications You must be signed in to change notification settings

vkinakh/gpu-benchmark

Repository files navigation

GPU Benchmark

Efficiently evaluate your GPU's deep learning performance with GPU Benchmark, leveraging pytorch and accelerate for a broad range of models.

Introduction

Maximize your GPU's potential in deep learning with this repository, providing comprehensive benchmarking scripts and performance insights.

Features

  • Utilize accelerate for deep learning training.
  • Precision options: fp32, fp16, bf16.
  • Scale across GPUs (1 to max available).
  • Log key metrics:
    • CPU, RAM, GPU usage
    • GPU memory, temperature
  • Plot system metrics.
  • Log training/validation metrics.
  • Support various models:

Files

  • train_vision_models.py: Train/evaluate vision models.
  • train_language_models.py: Train/evaluate language models.
  • llm_inference.py: Perform LLM inference.
  • benchmark.py: Launch benchmarking.
  • run.py: Execute multiple benchmarks with varied settings.

Usage

Environment Setup

Ensure NVIDIA drivers, CUDA, and conda are installed.

Create Conda Environment

conda env create -f environment.yml

For vision tasks, download ImageNet-like dataset, imagenette - recommended

Single Benchmark

Prepare accelerate config default_config.yaml.

Execute

accelerate launch --config_file=<config_file> benchmark.py \
                  --model=<model name> \                      # only needed for vision task, see MODEL_NAMES
                  --epochs=<n epochs> \                       # default: 5
                  --batch_size=<batch_size> \                 # default: 32
                  --data=<path/to/data> \                     # only needed for vision task, path to dataset, should have train and val subfolders with class subfolders
                  --monitor_log=<path/to/monitor/csv/file> \  # default: system_usage_log.csv
                  --log=<path/to/log/file> \                  # default: log.log
                  --workers=<n workers> \                     # default: 16
                  --lr=<learning rate> \                      # 3e-4
                  --classes=<n classes>                       # only needed for vision task, number of classes in dataset

Multiple Benchmarks

Example to run all vision models, language model and LLM inference with multiple GPUs and precisions.

python run.py --n_gpus=<number of GPUs> \
              --precisions=<list of precisions> \   # choices: no, fp16, bf16
              --n_epochs=<n epochs> \               # default: 5
              --n_workers=<n workers> \             # default: 16
              --vision_batch_size=<batch size> \    # default: 32
              --vision_lr=<lr> \                    # default: 3e-4
              --vision_class_num=<n classes> \      # n classes for vision tasks
              --vision_data=<path/to/dataset> \     # path to vision dataset
              --language_batch_size=<batch size> \  # default: 16
              --language_lr=<lr> \                  # default: 2e-5

Results of the benchmark, can be found in benchmark_results/%Y-%m-%d_%H-%M-%S folder with a timestamp

Visualizing System Information

The script will create plots of system information:

  • CPU usage, RAM usage
  • GPU temperature, GPU usage, GPU memory usage per each GPU
python plot_benchmark.py --csv_file=<path/to/csv/file> --output_dir=<path/to/output/directory>

About

Tool for benchmarking GPU models for variety of tasks using pytorch and accelerate libraries

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages