This repository has been archived by the owner on Feb 8, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
244 lines (207 loc) · 8.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""People Counter."""
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit person to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import time
import socket
import json
import cv2
import numpy as np
import time
import logging as log
import paho.mqtt.client as mqtt
from argparse import ArgumentParser
from inference import Network
# MQTT server environment variables
HOSTNAME = socket.gethostname()
IPADDRESS = socket.gethostbyname(HOSTNAME)
MQTT_HOST = IPADDRESS
MQTT_PORT = 3001
MQTT_KEEPALIVE_INTERVAL = 60
CPU_EXTENSION = "/opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/libcpu_extension_sse4.so"
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=True, type=str,
help="Path to image or video file")
parser.add_argument("-l", "--cpu_extension", required=False, type=str,
default=CPU_EXTENSION,
help="MKLDNN (CPU)-targeted custom layers."
"Absolute path to a shared library with the"
"kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.3,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
def connect_mqtt():
### TODO: Connect to the MQTT client ###
client = mqtt.Client()
client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL)
return client
# def get_class_names(class_nums):
# class_names= []
# for i in class_nums:
# class_names.append(CLASSES[int(i)])
# return class_names
def draw_masks(frame, result, args, width, height):
'''
Draw semantic mask classes onto the frame.
'''
# Create a mask with color by class
classes = []
count = 0
for box in result[0][0]: # Output shape is 1x1x100x7
conf = box[2]
if int(box[0]) not in classes:
classes.append(int(box[0]))
if int(box[1])== 1 and conf >= args.prob_threshold:
count = count+1
xmin = int(box[3] * width)
ymin = int(box[4] * height)
xmax = int(box[5] * width)
ymax = int(box[6] * height)
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 255), 1)
return frame, classes, count
def infer_on_stream(args, client):
"""
Initialize the inference network, stream video to network,
and output stats and video.
:param args: Command line arguments parsed by `build_argparser()`
:param client: MQTT client
:return: None
"""
# Initialise the class
# print(args)
infer_network = Network()
# Set Probability threshold for detections
prob_threshold = args.prob_threshold
single_img_flag = False
total_count = 0
total_frames = 0
total_inference_time = 0
last_count = 0
duration_time = 0
cur_request_id = 0
### TODO: Load the model through `infer_network` ###
infer_network.load_model(args.model, args.device, args.cpu_extension)
net_input_shape = infer_network.get_input_shape()
### TODO: Handle the input stream ###
video_file = args.input
if video_file == 'CAM': # Check for live feed
input_stream = 0
elif video_file.endswith('.jpg') or video_file.endswith('.bmp') : # Check for input image
single_img_flag = True
input_stream = video_file
else: # Check for video file
input_stream = video_file
assert os.path.isfile(video_file), "Specified input file doesn't exist"
try:
cap=cv2.VideoCapture(input_stream)
cap.open(input_stream)
except FileNotFoundError:
print("Cannot locate file: "+ video_file)
except Exception as e:
print("Something else went wrong with the video file: ", e)
width = int(cap.get(3))
height = int(cap.get(4))
# print(width, height)
### TODO: Loop until stream is over ###
while cap.isOpened():
### TODO: Read from the video capture ###
flag, frame = cap.read()
if not flag:
break
key_pressed = cv2.waitKey(60)
### TODO: Pre-process the image as needed ###
p_frame = cv2.resize(frame, (net_input_shape[3], net_input_shape[2]))
p_frame = p_frame.transpose((2,0,1))
p_frame = p_frame.reshape(1, *p_frame.shape)
### TODO: Start asynchronous inference for specified request ###
start_time = time.time()
infer_network.exec_net(cur_request_id, p_frame)
### TODO: Wait for the result ###
# Get the output of inference
if infer_network.wait(cur_request_id) == 0:
stop_time = time.time() - start_time
result = infer_network.get_output(cur_request_id)
total_frames = total_frames +1
# print(result)
# print(result.shape)
### TODO: Get the results of the inference request ###
frame, classes, current_count = draw_masks(frame, result, args, width, height)
# print(classes.shape)
inference_message = "Inference time: {:.3f}ms".format(stop_time * 1000)
cv2.putText(frame, inference_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255,0,0), 1)
total_inference_time = total_inference_time + stop_time * 1000
avg_message = "Average time: {:.3f}ms".format(total_inference_time/total_frames)
cv2.putText(frame, avg_message, (15, 35), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255,0,0), 1)
### TODO: Extract any desired stats from the results ###
### TODO: Calculate and send relevant information on ###
### current_count, total_count and duration to the MQTT server ###
### Topic "person": keys of "count" and "total" ###
### Topic "person/duration": key of "duration" ###
# When new person enters the video
if current_count > last_count:
duration_time = time.time()
total_count = total_count + current_count - last_count
client.publish("person", json.dumps({"total": total_count}))
# Person duration in the video is calculated
if current_count < last_count: #
duration = int(time.time() - duration_time)
client.publish("person/duration", json.dumps({"duration": duration}))
client.publish("person", json.dumps({"count": current_count})) # People Count
last_count = current_count
### TODO: Send the frame to the FFMPEG server ###
sys.stdout.buffer.write(frame)
sys.stdout.flush()
if key_pressed == 27:
break
### TODO: Write an output image if `single_image_mode` ###
#Save the Image
if single_img_flag:
cv2.imwrite('output_image.jpg', frame)
# releasing all resources
cap.release()
cv2.destroyAllWindows()
client.disconnect()
def main():
"""
Load the network and parse the output.
:return: None
"""
# Grab command line args
args = build_argparser().parse_args()
# Connect to the MQTT server
client = connect_mqtt()
# Perform inference on the input stream
infer_on_stream(args, client)
if __name__ == '__main__':
main()