-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlargest_zero_sum.py
66 lines (58 loc) · 2.45 KB
/
largest_zero_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
""" Problem statement:
https://www.interviewbit.com/problems/largest-continuous-sequence-zero-sum/
"""
import random
class Solution:
def find_largest_brute(self, array):
""" Brute force algorithm. Checks all subarrays.
Time complexity: O(n ^ 3). Space complexity: O(n), n is len(array).
"""
x, y = 0, -1 # start, end of largest subarray with zero sum
n = len(array)
for i in range(n):
for j in range(i, n):
curr_sum = sum(array[i:j + 1])
if curr_sum == 0 and (j - i + 1) > (y - x + 1):
x, y = i, j
return array[x:y + 1]
def find_largest(self, array):
""" Algorithm based on hashing already calculated sum.
Time complexity: O(n). Space complexity: O(n), n is len(array).
"""
prev_sum = {0: -1} # cumulative sum: index where it ends
x, y = 0, -1 # start, end of largest subarray with zero sum
curr = 0 # current cumulative sum
for i, num in enumerate(array):
curr += num
if curr in prev_sum: # found a zero sum subarray
# compare current subarray length with max subarray length
# length of subarray[i,j] = start_index - end_index + 1
if i - prev_sum[curr] > y - x + 1:
x, y = prev_sum[curr] + 1, i # update start, end of largest zero sum subarray
else: # add current cumulative sum to the dictionary
prev_sum[curr] = i
return array[x:y + 1]
def stress_test(self, func1, func2, n):
""" Stress tests two functions against each other using random array
of size n as input.
"""
while True:
array = [random.randrange(-100, 100) for i in range(n)]
res1 = func1(array)
res2 = func2(array)
if res1 == res2:
print("OK")
print(res1[:10])
else:
print("Results are different.")
print(f"array = {array}")
print(f"result 1 = {res1}")
print(f"result 2 = {res2}")
break
if __name__ == "__main__":
sol = Solution()
array = [1, 2, -2, 4, -4]
assert sol.find_largest_brute(array) == [2, -2, 4, -4]
assert sol.find_largest(array) == [2, -2, 4, -4]
# stress testing brute force and hashing based algorithms
sol.stress_test(sol.find_largest_brute, sol.find_largest, 10**2)