Skip to content

[CoRL2023] Official PyTorch implementation of PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation

License

Notifications You must be signed in to change notification settings

vlc-robot/polarnet

Repository files navigation

PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation

Figure 2 from paper

PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation
Shizhe Chen*, Ricardo Garcia*, Cordelia Schmid and Ivan Laptev
CoRL 2023

*Equal Contribution

Prerequisite

  1. Installation

Option 1: Use our pre-build singularity image.

Option 2: Install everything from scratch.

conda create --name polarnet python=3.9
conda activate polarnet

See instructions in PyRep and RLBench to install RLBench simulator (with VirtualGL in headless machines). Use our modified version of RLBench to support additional tasks.

Install python packages:

conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install -c huggingface transformers
conda install scipy tqdm

pip install typed-argument-parser lmdb msgpack-numpy tensorboardX 
pip install multimethod shortuuid termcolor easydict
pip install yacs jsonlines einops

Install Openpoints:

git submodule update --init

# install cuda
sudo apt-get remove --purge '^nvidia-.*' 
sudo apt autoremove

# blacklist nouveau: https://blog.csdn.net/threestooegs/article/details/124582963
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
sudo sh cuda_11.7.0_515.43.04_linux.run
# If you are a user of Jean-Zay cluster run `module load cuda/11.7.1 && module load cudnn/8.5.0.96-11.7-cuda` instead

pip install open3d==0.16.0 torch-scatter
conda install pytorch-scatter -c pyg

cd openpoints/cpp/pointnet2_batch
python setup.py install --user
cd ../

cd subsampling
python setup.py build_ext --inplace
cd ..

cd pointops/
python setup.py install --user
cd ..

cd chamfer_dist
python setup.py install --user
cd ../emd
python setup.py install --user
cd ../../../

Finally, install polarnet using:

pip install -e .
  1. Dataset Generation

Option 1: Use our pre-generated datasets including the keystep trajectories and instruction embeddings for the three setups studied in our paper and data for the 7 real robot tasks (17 variations). Using these datasets will also help reproducibility.

We recommend downloading the data using rclone.

Option 2: generate the dataset on your own.

conda activate polarnet
seed=0
task=put_knife_on_chopping_board
variation=0
variation_count=1

cd ~/Code/polarnet/

# 1. generate microstep demonstrations
python -m polarnet.preprocess.generate.dataset_microsteps \
     --save_path data/train_dataset/microsteps/seed{seed} \
    --all_task_file polarnet/assets/all_tasks.json \
    --image_size 128,128 --renderer opengl \
    --episodes_per_task 100 \
    --tasks ${task} --variations ${variation_count} --offset ${variation} \
    --processes 1 --seed ${seed} 

# 2. generate keystep demonstrations
python -m polarnet.preprocess.generate_dataset_keysteps \
    --microstep_data_dir data/train_dataset/microsteps/seed${seed} \
    --keystep_data_dir data/train_dataset/keysteps/seed${seed} \
    --tasks ${task}

# 3. (optional) check the correctness of generated keysteps
python -m polarnet.preprocess.evaluate_dataset_keysteps \
    --microstep_data_dir data/train_dataset/microsteps/seed${seed} \
    --keystep_data_dir data/train_dataset/keysteps/seed${seed} \
     --tasks ${task}

# 4. generate instructions embeddings for the tasks
python -m polarnet.preprocess.generate_instructions \
    --encoder clip \
    --output_file data/taskvar_instrs/clip

# 5. generate preprocessed keysteps demonstrations
 python -m polarnet.preprocess.generate_pcd_dataset_keysteps \
    --seed ${seed} \
    --num_cameras 3 \
    --dataset_dir data/train_dataset/ \
    --outname keysteps_pcd \

For slurm users, please check scripts in job_scripts.

Train

Our codes support distributed training with multiple GPUs in SLURM clusters.

For slurm users, please use the following command to launch the training script.

sbatch job_scripts/train_multitask_bc_10tasks.sh

For non-slurm users, please manually set the environment variables as follows.

export WORLD_SIZE=1
export MASTER_ADDR='localhost'
export MASTER_PORT=10000

export LOCAL_RANK=0 
export RANK=0
export CUDA_VISIBLE_DEVICES=0

python -m polarnet.train_models --exp-config config/10tasks.yaml

You can find PointNeXt pre-trained weights here.

Evaluation

For slurm users, please use the following command to launch the evaluation script.

sbatch job_scripts/eval_test_multi10.sh

For non-slurm users, run the following commands to evaluate the trained model.

# set outdir to the directory of your trained model
export DISPLAY=:0.0 # in headless machines

# validation: select the best epoch
for step in {50000..200000..10000}
do
python -m polarnet.eval_models \
    --exp_config ${outdir}/logs/training_config.yaml \
    --seed 100 --num_demos 20 \
    checkpoint ${outdir}/ckpts/model_step_${step}.pt
done

# run the script to summarize the validation results
python -m polarnet.summarize_val_results --result_file ${outdir}/preds/seed100/results.jsonl

# test: use a different seed from validation
step=300000
python -m polarnet.eval_models \
    --exp_config ${outdir}/logs/training_config.yaml \
    --seed 200 --num_demos 500 \
    checkpoint ${outdir}/ckpts/model_step_${step}.pt

# run the script to summarize the testing results
python -m polarnet.summarize_tst_results --result_file ${outdir}/preds/seed200/results.jsonl

You can also use in the same manner summarize_peract_official_tst_results.py and summarize_74_tst_results_by_groups.py to summarize 74 tasks and peract setups results.

Pre-trained models

You can find a checkpoint for the 10 tasks multi-task setup here.

pick_ and_lift pick_up _cup put_knife_on_ chopping_board put_money _in_safe push_ button reach_ target slide_block _to_target stack _wine take_money _out_safe take_umbrella_out_ of_umbrella_stand Avg.
seed=0 95.40 83.80 86.00 85.40 98.80 100.00 93.20 80.20 71.40 89.80 89.20

Other models coming soon...

BibTex

@article{chen23polarnet,
    author    = {Shizhe Chen and Ricardo Garcia and Cordelia Schmid and Ivan Laptev},
    title     = {PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation},
    booktitle = {Conference on Robotic Learning (CoRL)},
    year      = {2023}
}

Acknowledgements

PointNeXt code from openpoints library.

About

[CoRL2023] Official PyTorch implementation of PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published